首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the freshwater shrimp, Macrobrachium olfersii, acclimated to 21‰ salinity for 10 days were investigated using the substrate p-nitrophenylphosphate. The enzyme hydrolyzed this substrate obeying cooperative kinetics at a rate of 123.6 ± 4.9 U mg− 1 and K0.5 = 1.31 ± 0.05 mmol L− 1. Stimulation of K+-phosphatase activity by magnesium (Vmax = 125.3 ± 7.5 U mg− 1; K0.5 = 2.09 ± 0.06 mmol L− 1), potassium (Vmax = 134.2 ± 6.7 U mg− 1; K0.5 = 1.33 ± 0.06 mmol L− 1) and ammonium ions (Vmax = 130.1 ± 5.9 U mg− 1; K0.5 = 11.4 ± 0.5 mmol L− 1) was also cooperative. While orthovanadate abolished p-nitrophenylphosphatase activity, ouabain inhibition reached 80% (KI = 304.9 ± 18.3 μmol L− 1). The kinetic parameters estimated differ significantly from those for freshwater-acclimated shrimps, suggesting expression of different isoenzymes during salinity adaptation. Despite the ≈2-fold reduction in K+-phosphatase specific activity, Western blotting analysis revealed similar α-subunit expression in gill tissue from shrimps acclimated to 21‰ salinity or fresh water, although expression of phosphate-hydrolyzing enzymes other than (Na+,K+)-ATPase was stimulated by high salinity acclimation.  相似文献   

2.
The 31P nuclear magnetic resonance (NMR) characteristics, toxicity, and cellular penetration of five linear or cyclic α-aminophosphonate highly sensitive pH probes were investigated in Dictyostelium discoideum cells and isolated rat hearts and were compared with three phosphonic acid derivatives. The line width broadening at pH pKa, which was satisfactorily modelized for all compounds, was significantly limited in biological milieu for the new markers, affording a four- to sixfold better accuracy in pH determination. Cellular uptake or washout of nontoxic concentrations (<15 mM) of α-aminophosphonates occurred by rapid passive permeation, whereas standard probes required a much slower fluid-phase pinocytosis and transport processes that could ultimately lead to trapping. Using mild concentrations (<4 mM) three α-aminophosphonates having 6 < pKa < 7 allowed an easy and simultaneous 31P NMR determination of cytosolic, acidic, and extracellular compartments in anoxic–reoxygenated or starving D. discoideum.  相似文献   

3.
The immunologic cross-reactivity of the α and α+ forms of the large subunit and the β subunit of the (Na+ + K+)-ATPase from brain and kidney preparations was examined using rabbit antiserum prepared against the purified holo lamb kidney enzyme. As previously reported by Sweadner ((1979) J. Biol. Chem. 254, 6060–6067) phosphorylation of the large subunit of the (Na+ + K+)-ATPase in the presence of Na+, Mg2+, and [γ-32P]ATP revealed that dog and, very likely, rat brain contain two forms of the large subunit (designated α and α+) while dog, rat, and lamb kidney contain only one form (α). The cross-reactivity of the α and α+ forms in these preparations was investigated by resolving the subunits by SDS-polyacrylamide gel electrophoresis. The separated polypeptides were transferred to unmodified nitrocellulose paper, and reacted with rabbit anti-lamb kidney serum, followed by detection of the antigen-antibody complex with 125I-labeled protein A and autoradiography. By this method, the α and α+ forms of rat and dog brain, as well as the α form found in kidney, were shown to cross-react. In addition, membranes from human cerebral cortex were shown to contain two immunoreactive bands corresponding to the α and α+ forms of dog brain. In contrast, the brain of the insect Manduca sexta contains only one immunoreactive polypeptide with a molecular weight intermediate to the α and α+ forms of dog brain. The β subunit from lamb, dog and rat kidney and from dog and rat brain cross-reacts with anti-lamb kidney (Na+ + K+)-ATPase serum. The mobility of the β subunit from dog and rat brain on SDS-polyacrylamide electrophoresis gels is greater than the mobility of the β subunit from lamb, rat or dog kidney.  相似文献   

4.
Connective tissue of the freshwater pulmonateLymnaea stagnalis was shown to contain fucosyltransferase activity capable of transferring fucose from GDP-Fuc in 1–2 linkage to terminal Gal of type 3 (Gal1–3GalNAc) acceptors, and in 1–3 linkage to GlcNAc of type 2 (Gal1–4GlcNAc) acceptors. The 1–2 fucosyltransferase was active with Gal1–3GalNAc1-OCH2CH=CH2 (K m=12 mM,V max=1.3 mU ml–1) and Gal1–3GalNAc (K m=20 mM,V max=2.1 mU ml–1), whereas the 1–3 fucosyltransferase was active with Gal1–4GlcNAc (K m=23 mM,V max=1.1 mU ml–1). The products formed from Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4GlcNAc were purified by high performance liquid chromatography, and identified by 500 MHz1H-NMR spectroscopy and methylation analysis to be Fuc1–2Gal1–3GalNAc1-OCH2CH=CH2 and Gal1–4(Fuc1–3)GlcNAc, respectively. Competition experiments suggest that the two fucosyltransferase activities are due to two distinct enzymes.Abbreviations 2Fuc-T 1–2 fucosyltransferase - 3Fuc-T 1–3 fucosyltransferase - MeO-3Man 3-O-methyl-D-mannose - MeO-3Gal 3-O-methyl-D-galactose  相似文献   

5.
Microdissected -cell-rich pancreatic islets fromob/ob-mice were used in studies of transmembrane36Cl efflux. The mean rate coefficient for36Cl efflux was stable at 0.158 min–1 during the initial 10 min. Depolarization of the -cell plasma membrane by acute increases in extracellular K+ (5–130mM) stimulated the36Cl efflux in a concentration-dependent manner. Glucose-induced (20mM) and K+-induced increases in36Cl efflux were largely overlapping, but even at 135.9 mM K+, glucose slightly further enhanced the36Cl efflux rate. The data suggest (1) that pancreatic -cells are equipped with a voltage-dependent Cl permeability, (2) that glucose-induced increase in Cl permeability may, at least partly, be mediated by primary membrane depolarization, and (3) that glucose in addition may activate other mechanisms for -cell Cl transport.  相似文献   

6.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

7.
To remove endotoxins (lipopolysaccharides; LPS) from cell products used as drugs, water-insoluble poly(-lysine) (PL) particles were prepared by cross-linking with PL originating from Streptomyces albulus and chloromethyloxirane (CMO). The apparent pKa (pKa,app) and the anion-exchange capacity of the particles were easily adjusted by changing the PL ratio and the CMO ratio. The higher the pKa,app, the greater the LPS-adsorption capacity of the particles. On the other hand, when the PL ratio (in the particles) increased to 75 unit-mol% or higher, the adsorption of bovine serum albumin by the particles also increased, but decreased with increasing ionic strength of the buffer to μ=0.2 or higher. The adsorption of γ-globulin increased with decreasing PL ratio to 65 unit-mol% or lower. As a result, when the PL ratio was 70 unit-mol% and the pKa,app was 6.7, the PL/CMO particles selectively removed LPS from various protein solutions that were naturally contaminated with LPS, at pH 6.0 and μ=0.05.  相似文献   

8.
Giardia lamblia arginine deiminase (GlAD), the topic of this paper, belongs to the hydrolase branch of the guanidine-modifying enzyme superfamily, whose members employ Cys-mediated nucleophilic catalysis to promote deimination of l-arginine and its naturally occurring derivatives. G. lamblia is the causative agent in the human disease giardiasis. The results of RNAi/antisense RNA gene-silencing studies reported herein indicate that GlAD is essential for G. lamblia trophozoite survival and thus, a potential target for the development of therapeutic agents for the treatment of giardiasis. The homodimeric recombinant protein was prepared in Escherichia coli for in-depth biochemical characterization. The 2-domain GlAD monomer consists of a N-terminal domain that shares an active site structure (depicted by an in silico model) and kinetic properties (determined by steady-state and transient state kinetic analysis) with its bacterial AD counterparts, and a C-terminal domain of unknown fold and function. GlAD was found to be active over a wide pH range and to accept l-arginine, l-arginine ethyl ester, Nα-benzoyl-l-arginine, and Nω-amino-l-arginine as substrates but not agmatine, l-homoarginine, Nα-benzoyl-l-arginine ethyl ester or a variety of arginine-containing peptides. The intermediacy of a Cys424–alkylthiouronium ion covalent enzyme adduct was demonstrated and the rate constants for formation (k1 = 80 s−1) and hydrolysis (k2 = 35 s−1) of the intermediate were determined. The comparatively lower value of the steady-state rate constant (kcat = 2.6 s−1), suggests that a step following citrulline formation is rate-limiting. Inhibition of GlAD using Cys directed agents was briefly explored. S-Nitroso-l-homocysteine was shown to be an active site directed, irreversible inhibitor whereas Nω-cyano-l-arginine did not inhibit GlAD but instead proved to be an active site directed, irreversible inhibitor of the Bacillus cereus AD.  相似文献   

9.
10.
Through the screening of microorganisms capable of utilizing α-methylserine, three representative strains belonging to the bacterial genera Paracoccus, Aminobacter, and Ensifer were selected as potent producers of α-methylserine hydroxymethyltransferase, an enzyme that catalyzes the interconversion between α-methyl-l-serine and d-alanine via tetrahydrofolate. Among these strains, Paracoccus sp. AJ110402 was selected as the strain exhibiting the highest α-methylserine hydroxymethyltransferase activity. The enzyme was purified to homogeneity from a cell-free extract of this strain. The native enzyme is a homodimer with apparent molecular mass of 85 kDa and contains 1 mol of pyridoxal-5′-phosphate per mol of the subunit. The Km for α-methyl-l-serine and tetrahydrofolate was 0.54 mM and 73 μM, respectively. The gene from Paracoccus sp. AJ110402 encoding α-methylserine hydroxymethyltransferase was cloned and expressed in Escherichia coli. Sequence analysis revealed an open reading frame of 1278 bp, encoding a polypeptide with a calculated molecular mass of 46.0 kDa. Using E. coli cells as whole-cell catalysts, 9.7 mmol of α-methyl-l-serine was stereoselectively obtained from 15 mmol of d-alanine and 13.2 mmol of formaldehyde.  相似文献   

11.
Summary 1. The purpose of this study was (a) to identify if astrocytes show a similar non-Nernstian depolarization in low K+ or low Ca2+ solutions as previously found in human glial and glioma cells, and (b) to analyze the influence of the K+ conductance on the membrane potential of astrocytes.2. The membrane potential (Em) and the ionic conductance were studied with whole-cell patch-clamp technique in neonatal rat astrocytes (5–9 days in culture) and in human glioma cells (U-251MG).3. In 3.0 mM K+, Em was –75 ± 1.0 mV (mean ± SEM,n=39) in rat astrocytes and –79 ± 0.7 mV (n=5) in U-251MG cells. In both cell types Em changed linearly to the logarithm of [K+]0 between 3.0 and 160 mM K+. K+ free medium caused astrocytes to hyperpolarize to –93 ± 2.7 mV (n=21) and U-251MG cells to depolarize to –27 ± 2.1 mV (n=3).4. The I-E curve did not show inward rectification in astrocytes at this developmental stage. The slope conductance (g) exhibited only a small decrease (–19%) in K+ free solution and no significant change in 160 mM K+.5. Ba2+ (1.0 mM) depolarized astrocytes to –45 ± 2.9 mV (n=11), decreasing the slope conductance (g) by 42.4 ± 8.3% (n=11). Ca2+ free solution depolarized astrocytes to –53 ± 3.4 mV (n=12) and resulted in a positive shift of the I-E curve, increasing g by 15.3 ± 8.2% (n=8).6. Calculations indicated that a block of K+ channels explains the depolarizing effect of Ba2+. The effects of K+ free or Ca2+ free solutions on Em can be explained by a transformation of K+ channels to non-specific leakage channels. That astrocytes show a different reaction to low K+ than glioma cells can be related to the lack of inwardly rectifying K+ channels in astrocytes at this developmental stage.  相似文献   

12.
Role of Glutathione in the Response of Escherichia coli to Osmotic Stress   总被引:1,自引:0,他引:1  
The growth of Escherichia coli mutants deficient in glutathione synthesis (gshA) and in glutathione reductase (gor) was suppressed in medium of elevated osmolarity. A mutant in -glutamyl transpeptidase (ggt) displayed better ability for osmoadaptation than the parental strain. The unfavorable effect of the gsh mutation on osmoadaptation of growing E. coli cells was more pronounced at low concentrations of K+ in the medium. An increase in osmolarity caused an increase in the intracellular content of glutathione. Changes in the extracellular glutathione level were biphasic: the glutathione level rapidly decreased during the first stage of the response and increased during the second stage. The changes in glutathione levels suggest that under hyperosmotic shock the glutathione transport from the medium into the cell can contribute to the intracellular glutathione accumulation. Changes in the level of intracellular K+ were similarly biphasic: a rapid increase in the K+ level during the first stage of the response to hyperosmotic shock changed to a gradual decrease during the second stage. In mutant gshA cells adapted to osmotic shock, the intracellular K+ level was markedly higher than in the parental strain cells. The possible role of glutathione in the response of E. coli to osmotic shock is discussed.  相似文献   

13.
In the present study we investigated the effects of L-pyroglutamic acid (PGA), which predominantly accumulates in the inherited metabolic diseases glutathione synthetase deficiency (GSD) and -glutamylcysteine synthetase deficiency (GCSD), on some in vitro parameters of energy metabolism and lipid biosynthesis. We evaluated the rates of CO2 production and lipid synthesis from [U-14C]acetate, as well as ATP levels and the activities of creatine kinase and of the respiratory chain complexes I-IV in cerebral cortex of young rats in the presence of PGA at final concentrations ranging from 0.5 to 3 mM. PGA significantly reduced brain CO2 production by 50% at the concentrations of 0.5 to 3 mM, lipid biosynthesis by 20% at concentrations of 0.5 to 3 mM and ATP levels by 52% at the concentration of 3 mM. Regarding the enzyme activities, PGA significantly decreased NADH:cytochrome c oxireductase (complex I plus CoQ plus complex III) by 40% at concentrations of 0.5–3.0 mM and cytochrome c oxidase activity by 22–30% at the concentration of 3.0 mM, without affecting the activities of succinate dehydrogenase, succinate:DCPIP oxireductase (complex II), succinate:cytochrome c oxireductase (complex II plus CoQ plus complex III) or creatine kinase. The results strongly indicate that PGA impairs brain energy production. If these effects also occur in humans, it is possible that they may contribute to the neuropathology of patients affected by these diseases.  相似文献   

14.
This study investigates the reverse mode of the Na+/glucose cotransporter (SGLT1). In giant excised inside-out membrane patches from Xenopus laevis oocytes expressing rabbit SGLT1, application of α-methyl-D-glucopyranoside (αMDG) to the cytoplasmic solution induced an outward current from cytosolic to external membrane surface. The outward current was Na+- and sugar-dependent, and was blocked by phlorizin, a specific inhibitor of SGLT1. The current-voltage relationship saturated at positive membrane voltages (30–50 mV), and approached zero at −150 mV. The half-maximal concentration for αMDG-evoked outward current (K0.5αMDG) was 35 mM (at 0 mV). In comparison, K0.5αMDG for forward sugar transport was 0.15 mM (at 0 mV). K0.5Na was similar for forward and reverse transport (≈35 mM at 0 mV). Specificity of SGLT1 for reverse transport was: αMDG (1.0) > D-galactose (0.84) > 3-O-methyl-glucose (0.55) > D-glucose (0.38), whereas for forward transport, specificity was: αMDG ≈ D-glucose ≈ D-galactose > 3-O-methyl-glucose. Thus there is an asymmetry in sugar kinetics and specificity between forward and reverse modes. Computer simulations showed that a 6-state kinetic model for SGLT1 can account for Na+/sugar cotransport and its voltage dependence in both the forward and reverse modes at saturating sodium concentrations. Our data indicate that under physiological conditions, the transporter is poised to accumulate sugar efficiently in the enterocyte.  相似文献   

15.
The kinetic properties of a microsomal gill (Na+,K+)-ATPase from the blue crab Callinectes danae were analyzed using the substrate p-nitrophenylphosphate. The (Na+,K+)-ATPase hydrolyzed PNPP obeying cooperative kinetics (n=1.5) at a rate of V=125.4±7.5 U mg−1 with K0.5=1.2±0.1 mmol l−1; stimulation by potassium (V=121.0±6.1 U mg−1; K0.5=2.1±0.1 mmol l−1) and magnesium ions (V=125.3±6.3 U mg−1; K0.5=1.0±0.1 mmol l−1) was cooperative. Ammonium ions also stimulated the enzyme through site–site interactions (nH=2.7) to a rate of V=126.1±4.8 U mg−1 with K0.5=13.7±0.5 mmol l−1. However, K+-phosphatase activity was not stimulated further by K+ plus NH4+ ions. Sodium ions (KI=36.7±1.7 mmol l−1), ouabain (KI=830.3±42.5 μmol l−1) and orthovanadate (KI=34.0±1.4 nmol l−1) completely inhibited K+-phosphatase activity. The competitive inhibition by ATP (KI=57.2±2.6 μmol l−1) of PNPPase activity suggests that both substrates are hydrolyzed at the same site on the enzyme. These data reveal that the K+-phosphatase activity corresponds strictly to a (Na+,K+)-ATPase in C. danae gill tissue. This is the first known kinetic characterization of K+-phosphatase activity in the portunid crab C. danae and should provide a useful tool for comparative studies.  相似文献   

16.
In a comparative experiment the effect of cortisol and growth hormone (GH) on the hypo-osmoregulatory ability of a landlocked and an anadromous strain of Arctic charr (Salvelinus alpinus) was investigated. Cortisol and GH were implanted either alone or in combination, and the fish were exposed to a 24 h seawater challenge test (SWT) on days 14 and 28 after implantation. Hypo-osmoregulatory ability, measured as plasma osmolality and chloride concentration after the SWTs, was better in the anadromous than in the landlocked strain, irrespective of treatment. However, cortisol provided a strong stimulation of hypo-osmoregualtory ability in both strains, and this stimulation seemed to be potentiated by GH in an additive manner. Improved hypo-osmoregulatory ability in GH + cortisol treated anadromous Arctic charr was accompanied by increased gill Na+, K+-ATPase activity and Na+–K+–2Cl cotransporter protein abundance, but no changes in gill Na+,K+-ATPase α1a and α1b mRNA levels. For landlocked charr the improved hypo-osmoregulatory ability in GH +cortisol treated fish was accompanied only with an increase in gill Na+–K+–2Cl cotransporter protein abundance. Hormone treatment caused an improvement of hypo-osmoregulatory ability that was of approximately the same magnitude in the landlocked as in the anadromous Arctic charr. This suggests that the lack of spontaneous development of hypo-osmoregulatory ability often seen in landlocked populations of Arctic charr may depend, at least partly, on a lack of the hormonal activation seen in anadromous populations.  相似文献   

17.
An intracellular β-xylosidase from the thermophilic fungus Sporotricum thermophile strain ATCC 34628 was purified to homogeneity by Q-Sepharose and Mono-Q column chromatographies. The protein properties correspond to molecular mass and pI values of 45 kDa and 4.2, respectively. The enzyme is optimally active at pH 7.0 and 50 °C. The purified β-xylosidase is fully stable at pH 6.0–8.0 and temperatures up to 50 °C and retained over 58% of its activity after 1 h at 60 °C. The enzyme hydrolyzes β-1,4-linked xylo-oligosaccharides with chain lengths from 2 to 6, releasing xylose from the non-reducing end, but is inactive against xylan substrates. The apparent Km and Vmax values from p-nitrophenyl β-d-xylopyranoside are 1.1 mM and 114 μmol p-nitrophenol min−1 mg−1, respectively. Alcohols inactivate the enzyme, ethanol at 10% (v/v) yields a 30% decrease of its activity. The enzyme is irreversibly inhibited by 2,3-epoxypropyl β-d-xylobioside while alkyl epoxides derived from d-xylose were not inhibitors of the enzyme. The enzyme catalyses the condensation reaction using high donor concentration, up to 60% (w/v) xylose.  相似文献   

18.
The dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a critical bacterial enzyme for the construction of the bacterial cell wall. A screen biased toward compounds containing zinc-binding groups (ZBG’s) including thiols, carboxylic acids, boronic acids, phosphonates and hydroxamates has delivered a number of micromolar inhibitors of DapE from Haemophilus influenzae, including the low micromolar inhibitor l-captopril (IC50 = 3.3 μM, Ki = 1.8 μM). In vitro antimicrobial activity was demonstrated for l-captopril against Escherichia coli.  相似文献   

19.
An -poly-l-lysine-degrading enzyme (PLD) from Kitasatospora sp. CCTCC M205012 has been purified to homogeneity by three steps of anion-exchange chromatography including DEAE-Sepharose, Source 15Q and Mono Q, with a 500-fold increase in specific activity and 40.9% yield. The PLD has a molecular mass of approximately 87.0 kDa and consists of two identical subunits with a molecular mass of 43.6 kDa. Electrophoretic shows that the PLD isoelectric point was about 7.2. The optimum temperature and pH for the PLD was 30 °C and 7.0, respectively. The PLD was deactivated by EDTA, which was indicated that the enzyme was a metallo enzyme. The activity of PLD was stimulated by Co2+ and inhibited by Ca2+ remarkably. The apparent Km with l-lysyl-p-nitroanilide as substrate was 0.216 mM and the Vmax was 0.112 mmol/min mg. The PLD was an exo-type enzyme and monomers of l-lysine were detected during the enzymatic degradation of -PL.  相似文献   

20.
Low concentrations of hydrophobic pyridine homologues (1 mM) were found to increase the rate of the Hill reaction in chloroplasts without significantly affecting either the steady-state proton uptake or the rate of proton leakage in the dark. By assuming that the organic base can be bound to two types of independent binding sites in the thylakoid membrane with dissociation constantsK 1 andK 2 respectively, the kinetic data can be treated quantitatively. The values ofK 1 andK 2 determined by the treatment are in the same relative order as the hydrophobicities of the pyridine homologues:K 1=1.16 mM andK 2=54 mM for pyridine; 0.6 and 38 mM for 4-picoline; 0.27 and 31 mM for 4-ethylpyridine, 0.10 and 4.2 mM for 4-t-butylpyridine; 0.08 and 3.2 mM for 4-n-butylpyridine. The rates of oxygen generation and proton uptake by illuminated chloroplasts with either ferricyanide or 1,4-benzoquinone as the electron acceptor were also measured in the presence of various pyridine homologues. Low concentration of pyridine homologues were found to decrease the H+/e ratio. This last observation seems to substantiate an indirect coupling mechanism between electron transport and proton translocation.Abbreviations Chl chlorophyll - CF0 - CF1 the coupling factor complex of chloroplast - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - Tricine N-tris-(hydroxymethyl)methylglycine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号