首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Poly(C)-binding proteins (PCBPs) constitute a family of nucleic acid-binding proteins that play important roles in a wide spectrum of regulatory mechanisms. The diverse functions of PCBPs are dependent on the ability of the PCBPs to recognize poly(C) sequences with high affinity and specificity. PCBPs contain three copies of KH (hnRNP K homology) domains, which are responsible for binding nucleic acids. We have determined the NMR structure of the first KH domain (KH1) from PCBP2. The PCBP2 KH1 domain adopts a structure with three alpha-helices packed against one side of a three-stranded antiparallel beta-sheet. Specific binding of PCBP2 KH1 to a number of poly(C) RNA and DNA sequences, including the C-rich strand of the human telomeric DNA repeat, the RNA template region of human telomerase, and regulatory recognition motifs in the poliovirus-1 5'-untranslated region, was established by monitoring chemical shift changes in protein (15)N-HSQC spectra. The nucleic acid binding groove was further mapped by chemical shift perturbation upon binding to a six-nucleotide human telomeric DNA. The binding groove is an alpha/beta platform formed by the juxtaposition of two alpha-helices, one beta-strand, and two flanking loops. Whereas there is a groove in common with all of the DNA and RNA binders with a hydrophobic floor accommodating a three-residue stretch of C residues, nuances in recognizing flanking residues are provided by hydrogen bonding partners in the KH domain. Specific interactions of PCBP2 KH1 with telomeric DNA and telomerase RNA suggest that PCBPs may participate in mechanisms involved in the regulation of telomere/telomerase functions.  相似文献   

4.
5.
Telomerase is a ribonucleoprotein that adds DNA to the ends of chromosomes. The catalytic protein subunit of telomerase (TERT) contains an N-terminal domain (TEN) that is important for activity and processivity. Here we describe a mutation in the TEN domain of human TERT that results in a greatly increased primer K(d), supporting a role for the TEN domain in DNA affinity. Measurement of enzyme kinetic parameters has revealed that this mutant enzyme is also defective in dNTP polymerization, particularly while copying position 51 of the RNA template. The catalytic defect is independent of the presence of binding interactions at the 5'-region of the DNA primer, and is not a defect in translocation rate. These data suggest that the TEN domain is involved in conformational changes required to position the 3'-end of the primer in the active site during nucleotide addition, a function which is distinct from the role of the TEN domain in providing DNA binding affinity.  相似文献   

6.
7.
Telomerase is a ribonucleoprotein enzyme that maintains chromosome ends through de novo addition of telomeric DNA. The ability of telomerase to interact with its DNA substrate at sites outside its catalytic centre (‘anchor sites’) is important for its unique ability to undergo repeat addition processivity. We have developed a direct and quantitative equilibrium primer-binding assay to measure DNA-binding affinities of regions of the catalytic protein subunit of recombinant Tetrahymena telomerase (TERT). There are specific telomeric DNA-binding sites in at least four regions of TERT (the TEN, RBD, RT and C-terminal domains). Together, these sites contribute to specific and high-affinity DNA binding, with a Kd of ~8 nM. Both the Km and Kd increased in a stepwise manner as the primer length was reduced; thus recombinant Tetrahymena telomerase, like the endogenous enzyme, contains multiple anchor sites. The N-terminal TEN domain, which has previously been implicated in DNA binding, shows only low affinity binding. However, there appears to be cooperativity between the TEN and RNA-binding domains. Our data suggest that different DNA-binding sites are used by the enzyme during different stages of the addition cycle.  相似文献   

8.
9.
Telomerase is a promising "universal" anticancer target. It has been demonstrated that inhibition of telomerase leads to mortalization and death of previously immortal cell lines. We are interested in targeting telomerase by binding to the RNA/DNA duplex that forms during its catalytic cycle. The RNA strand of this duplex is a component of telomerase and acts as a template to direct the synthesis of the single-stranded DNA telomere. We have hypothesized that molecules that bind to this duplex will inhibit the enzyme by either preventing strand dissociation or by sufficiently distorting the substrate, thereby causing a misalignment of key catalytic residues. To test this hypothesis we have examined the activity of telomerase in the presence of a range of intercalating molecules, known for their broad duplex binding properties. Of the nine compounds we examined, four show promising lead activity in the low micromolar range. A kinetic analysis of the telomeric products suggests that these compounds do not act by stabilizing G-quartets, thereby supporting the telomeric RNA/DNA heteroduplex as the site of action. We anticipate using these lead compounds as the basis for combinatorial variation to increase the affinity and specificity for the target telomerase.  相似文献   

10.
11.
12.
Yeo M  Rha SY  Jeung HC  Shen XH  Yang SH  An SW  Roh JK  Chung HC 《FEBS letters》2005,579(1):127-132
Even if template sequence of hTR played an essential role in telomere binding, a 326 nucleotide fragment of hTR containing template, pseudoknot, and CR4-5 domains is critical for both binding with telomeric DNA and reconstitution of telomerase activity. A functional study with antisense oligonucleotides suggested that targeted disruption of the template region efficiently abrogated both telomeric DNA binding and telomerase activity, whereas disruption of the CR4-5 region induced only loss of telomerase activity. hTR interacts with telomeric DNA via structural region composed of the template, pseudoknot, and CR4-5 domains, however, each structural domain plays a distinct role in telomere binding and telomerase activity reconstitution.  相似文献   

13.
14.
15.
16.
We found that UP1, a proteolytic product of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), both enhances and represses the telomerase activity. The formation of the UP1–telomerase RNA–telomeric DNA ternary complex was revealed by a gel retardation experiment. The interactions in the ternary and binary complexes were elucidated by NMR. UP1 has two nucleic acid-binding domains, BD1 and BD2. In the UP1–telomerase RNA binary complex, both BD1 and BD2 interact with telomerase RNA. Interestingly, when telomeric DNA was added to the binary complex, telomeric DNA bound to BD1 in place of telomerase RNA. Thus, BD1 basically binds to telomeric DNA, while BD2 mainly binds to telomerase RNA, which resulted in the formation of the ternary complex. Here, UP1 bridges telomerase and telomeric DNA. It is supposed that UP1/hnRNP A1 serves to recruit telomerase to telomeric DNA through the formation of the ternary complex. A model has been proposed for how hnRNP A1/UP1 contributes to enhancement of the telomerase activity through recruitment and unfolding of the quadruplex of telomeric DNA.  相似文献   

17.
18.
Telomere-specific repeat sequences are essential for chromosome end stability. Telomerase maintains telomere length by adding sequences de novo onto chromosome ends. The template domain of the telomerase RNA component dictates synthesis of species-specific telomeric repeats and other regions of the RNA have been suggested to be important for enzyme structure and/or catalysis. Using enzyme reconstituted in vitro with RNAs containing deletions or substitutions we identified nucleotides in the RNA component that are important for telomerase activity. Although many changes to conserved features in the RNA secondary structure did not abolish enzyme activity, levels of activity were often greatly reduced, suggesting that regions other than the template play a role in telomerase function. The template boundary was only altered by changes in stem II that affected the conserved region upstream of the template, not by changes in other regions, such as stems I, III and IV, consistent with a role of the conserved region in defining the 5' boundary of the template. Surprisingly, telomerase RNAs with substitutions or deletion of residues potentially abolishing the conserved pseudoknot structure had wild-type levels of telomerase activity. This suggests that this base pairing interaction may not be required for telomerase activity per se but may be conserved as a regulatory site for the enzyme in vivo.  相似文献   

19.
The ribonucleoprotein enzyme telomerase synthesizes one strand of telomeric DNA by copying a template sequence within the RNA moiety of the enzyme. Kinetic studies of this polymerization reaction were used to analyze the mechanism and properties of the telomerase from Tetrahymena thermophila. This enzyme synthesizes TTGGGG repeats, the telomeric DNA sequence of this species, by elongating a DNA primer whose 3' end base pairs with the template-forming domain of the RNA. The enzyme was found to act nonprocessively with short (10- to 12-nucleotide) primers but to become processive as TTGGGG repeats were added. Variation of the 5' sequences of short primers with a common 3' end identified sequence-specific effects which are distinct from those involving base pairing of the 3' end of the primer with the RNA template and which can markedly induce enzyme activity by increasing the catalytic rate of the telomerase polymerization reaction. These results identify an additional mechanistic basis for telomere and DNA end recognition by telomerase in vivo.  相似文献   

20.
Heterogeneous nuclear ribonucleoprotein D, also known as AUF1, has two DNA/RNA-binding domains, each of which can specifically bind to single-stranded d(TTAGGG)n, the human telomeric repeat. Here, the structure of the C-terminal-binding domain (BD2) complexed with single-stranded d(TTAGGG) determined by NMR is presented. The structure has revealed that each residue of the d(TAG) segment is recognized by BD2 in a base-specific manner. The interactions deduced from the structure have been confirmed by gel retardation experiments with mutant BD2 and DNA. It is known that single-stranded DNA with the telomeric repeat tends to form a quadruplex and that the quadruplex has an inhibitory effect on telomere elongation by telomerase. This time it is revealed that BD2 unfolds the quadruplex of such DNA upon binding. Moreover, the effect of BD2 on the elongation by telomerase was examined in vitro. These results suggest the possible involvement of heterogeneous nuclear ribonucleoprotein D in maintenance of the telomere 3'-overhang either through protection of a single-stranded DNA or destabilization of the potentially deleterious quadruplex structure for the elongation by telomerase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号