首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Restriction fragment length polymorphisms (RFLPs) were described for the porcine loci for β-glucosidase (GBA) and the β-polypeptide 1 of the Na+, K+-transporting ATPase (ATP1B1). Linkage analyses using a three-generation pedigree provided evidence for the assignment of ATP1B1, GBA and two microsatellite loci (S0001 and S0067) to a previously described linkage group comprising the loci for blood group L (EAL) and an anonymous microsatellite (S0097). The linear order of the six markers was determined with confidence by multipoint analyses and the length of the linkage group was estimated at 88 CM. This linkage group was assigned to pig chromosome 4 on the basis of a previous physical localization of the ATP1B1 gene. In situ hybridization data for S0001 presented in this study were consistent with a localization on chromosome 4 and suggested a regional localization to 4pl2-pl3. The present study reveals conflicting data concerning the genetic localization of the K88 loci controlling the expression of the receptors for the E. coli pilus antigens. One group has reported data suggesting a loose linkage between K88 and EAL, now mapped to chromosome 4, whereas two other groups have found linkage between K88 and the transferrin locus (TF), mapped to chromosome 13 by in situ hybridization.  相似文献   

2.
A porcine 2-kb partial dipeptidylpeptidase IV (DPP4, EC 3.4.14.5) cDNA clone and a porcine 16-kb genomic fragment containing parts of the DPP4 gene were isolated, characterized, and used as probes to map the DPP4 gene to pig Chr (Chr) 15q21 by fluorescence in situ hybridization. A two-allele RFLP was revealed for the DPP4 gene. This polymorphism was utilized in a linkage test against the erythrocyte antigen G (EAG), previously assigned to Chr 15, and the microsatellite S0088, which is linked to EAG. The linkage analyses revealed significant evidence for linkage confirming the assignment of DPP4 to Chr 15.  相似文献   

3.
A polymorphism in the TATA-box of the porcine growth hormone (GH) gene was analysed in a wild pig/Large White intercross, in which 129 markers had been scored previously. Linkage analyses demonstrated that the GH locus belonged to a linkage group on chromosome 12 together with a previously unassigned marker, the erythrocyte antigen D (EAD) locus. The linear order of this linkage group is EAD-GH-S0096-S0090-S0106-arachidonate 12-lipoxygenase (ALOX12)-inhibin beta A (INHBA). The length of the linkage group was estimated at 93 cM (sex average). The effects of the GH genotype on growth and fat deposition traits were investigated using phenotypic data from the 191 F2 animals. No significant effect of GH was detected, and we therefore conclude that this locus does not play a major role in defining the genetic differences between the wild and Large White pigs for these traits.  相似文献   

4.
The transgene-induced mutation 9257 and the spontaneous mutation twirler cause craniofacial and inner ear malformations and are located on mouse chromosome 18 near the ataxia locusax.To map the human homolog of 9257, a probe from the transgene insertion site was used to screen a human genomic library. Analysis of a cross-hybridizing human clone identified a 3-kb conserved sequence block that does not appear to contain protein coding sequence. Analysis of somatic cell hybrid panels assigned the human locus to 18q11. The polymorphic microsatellite markers D18S1001 and D18S1002 were isolated from the human locus and mapped by linkage analysis using the CEPH pedigrees. The 9257 locus maps close to the centromeres of human chromosome 18q and mouse chromosome 18 at the proximal end of a conserved linkage group. To evaluate the role of this locus in human craniofacial disorders, linkage to D18S1002 was tested in 11 families with autosomal dominant nonsyndromic cleft lip and palate and 3 families with autosomal dominant cleft palate only. Obligatory recombinants were observed in 8 of the families, and negative lod scores from the other families indicated that these disorders are not linked to the chromosome 18 loci.  相似文献   

5.
We developed a reference karyotype for B. vulgaris which is applicable to all beet cultivars and provides a consistent numbering of chromosomes and genetic linkage groups. Linkage groups of sugar beet were assigned to physical chromosome arms by FISH (fluorescent in situ hybridization) using a set of 18 genetically anchored BAC (bacterial artificial chromosome) markers. Genetic maps of sugar beet were correlated to chromosome arms, and North–South orientation of linkage groups was established. The FISH karyotype provides a technical platform for genome studies and can be applied for numbering and identification of chromosomes in related wild beet species. The discrimination of all nine chromosomes by BAC probes enabled the study of chromosome‐specific distribution of the major repetitive components of sugar beet genome comprising pericentromeric, intercalary and subtelomeric satellites and 18S‐5.8S‐25S and 5S rRNA gene arrays. We developed a multicolor FISH procedure allowing the identification of all nine sugar beet chromosome pairs in a single hybridization using a pool of satellite DNA probes. Fiber‐FISH was applied to analyse five chromosome arms in which the furthermost genetic marker of the linkage group was mapped adjacently to terminal repetitive sequences on pachytene chromosomes. Only on two arms telomere arrays and the markers are physically linked, hence these linkage groups can be considered as terminally closed making the further identification of distal informative markers difficult. The results support genetic mapping by marker localization, the anchoring of contigs and scaffolds for the annotation of the sugar beet genome sequence and the analysis of the chromosomal distribution patterns of major families of repetitive DNA.  相似文献   

6.
The polytene chromosomes of 3347 larvae of the Simulium tuberosum group in Asia were analysed, representing the largest ever cytogenetic study of black flies in the Oriental Region. Band‐by‐band comparisons, relative to the established standard chromosome map for the subgenus Simulium, revealed 17 cytogenetically distinct taxa in Thailand, plus an 18th in China. Six of these taxa correspond to morphologically described species (S. doipuiense, S. rufibasis, S. setsukoae, S. tani, S. yuphae and S. weji). Recognition of the 18 taxa is based largely on unique inversions, either fixed or sex linked, primarily in the long arm of chromosome III. The greatest cytological diversity was discovered in the S. tani lineage, with ten cytoforms. This marked chromosomal diversification within S. tani is based largely on two inversions that have assumed different roles over evolutionary time, variously functioning in different combinations as fixed inversions, sex‐linked inversions and autosomal polymorphisms. Shared unique chromosomal features, relative to the subgeneric standard chromosome map, allowed evolutionary relationships among the cytotaxa to be inferred. Fluctuations in climate during the Pleistocene might have promoted differentiation of the Southeast Asian S. tuberosum group in isolated refugia such as mountains. © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 289–315.  相似文献   

7.
Investigation of published sequence data from the porcine insulin-like growth factor 1 (IGF1) gene, resulted in the detection of a microsatellite in the first intron of the gene. Polymerase chain reaction (PCR) primers flanking the (CA)19 repeat were constructed. Polymorphism and Mendelian segregation were documented in a three-generation pedigree and allele frequencies were determined in 74 unrelated animals from four different breeds. Seven alleles were encountered. Linkage analysis was performed in a large pedigree established for gene mapping. Linkage between the IGF1 microsatellite and an anonymous microsatellite marker, S0005, was detected. Furthermore, IGF1 and S0005 was found to be linked to the porcine submaxillary gland mucin (MUC) gene, previously assigned to chromosome 5. The results presented here extend the linkage group on pig chromosome 5 and are in accordance with conserved synteny between human chromosome 12, cattle chromosome 5, mouse chromosome 10 and pig chromosome 5.  相似文献   

8.
Seven bovine erythrocyte antigen loci and three serum protein loci were tentatively assigned to chromosomes or synteny groups by linkage analysis to previously assigned microsatellite DNA markers. The erythrocyte antigen locus EAB was mapped to synteny group U27; EAC to chromosome 18, synteny group U9; EAL to chromosome 3, synteny group U6; EAS to chromosome 21, synteny group U4; EAZ to chromosome 10, synteny group U5; EAR' to chromosome 16, synteny group U1; and EAT' to chromosome 19, synteny group U21. The vitamin D binding protein (GC) and albumin (ALB) loci were assigned to chromosome 6, synteny group U15 and post-transferrin 2 (PTF 2) to chromosome 19, synteny group U21.  相似文献   

9.
A significant amount of genetic and genomic resources have been developed in papaya (Carica papaya, $ {\hbox{2n = 2}} \times { = 18} $ ), including genetic linkage maps consisting of nine major and three minor linkage groups. However, the 12 genetic linkage groups have not been integrated with the nine chromosomes of papaya. Bacterial artificial chromosome (BAC) clones associated with each linkage group were recently isolated. These linkage group-specific BACs were mapped to meiotic pachytene chromosomes of papaya using fluorescence in situ hybridization (FISH). The FISH mapping results integrated the 12 linkage groups into the nine papaya chromosomes. We developed a pachytene chromosome-based high resolution karyotype for the hermaphrodite plant genome of papaya cultivar SunUp. The chromosomal distribution of heterochromatin in the papaya genome is provided in the karyotype with the X chromosome representing the most euchromatic chromosome in the papaya genome. FISH mapping also revealed a significant amplification of sequences related to the 5S ribosomal RNA genes, which was detected in the male-specific region of the Y chromosome, but not in the corresponding region in the X chromosome.  相似文献   

10.
A human cDNA probe of the tumour protein p53 (TP53) was used to localize the homologous porcine gene by in situ hybridization. The gene was mapped to chromosome 12q12-q14. Together with already known mapping data, these results confirm the localization of an evolutionary conserved linkage group on porcine chromosome 12 which is localized in man on chromosome 17, in cattle on chromosome 19, and in mice on chromosome 11.  相似文献   

11.
 Twenty-four marker loci representing each of the nine linkage groups of sugar beet (Beta vulgaris) have been assigned to the nine primary trisomics of Butterfass (1964). Single-copy RFLP probes were hybridized with filter-bound DNA of the trisomics. The autoradiographs were scanned and analyzed by densitometric methods. Statistics on the integrated optical densities of the RFLP bands revealed a clear relationship of each linkage group to a distinct trisomic type. For the first time each of the linkage groups could unequivocally be assigned to one sugar beet chromosome. A standard nomenclature of the 9 chromosomes of sugar beet is suggested and discussed with respect to previous numbering systems. Received: 27 February 1997/Accepted: 7 March 1997  相似文献   

12.
The teosinte Zea nicaraguensis, a wild relative of maize, possesses a flooding tolerance-related trait: the formation of constitutive root aerenchyma under drained (non-flooded) soil conditions. A previous study suggested that the degree of constitutive aerenchyma formation varies within Z. nicaraguensis. The objectives of this study were to construct linkage maps, to determine the marker order in a region of chromosome 4 in which recombination between maize and Z. nicaraguensis is suppressed, and to identify quantitative trait loci (QTL) controlling constitutive root aerenchyma formation in two segregating populations of Z. nicaraguensis. A total of 236 simple sequence repeat (SSR) markers were screened for polymorphism in an S1 population of Z. nicaraguensis. Seventy-one polymorphic SSR markers were assigned to 10 chromosomes, and a linkage map was constructed covering 793.5 cM. In the S1 map, a paracentric inversion was detected on the long arm of chromosome 4; this rearrangement was confirmed in an S1 linkage map of a different Z. nicaraguensis accession. Composite interval mapping analysis in 96 S1 plants revealed QTL for aerenchyma formation on chromosomes 1 (bins 1.06–1.07) and 7 (bin 7.01), explaining 17 and 12% of the total phenotypic variance, respectively. The QTL on chromosome 1 was verified by using 156 S2 plants. Near-isogenic lines exhibiting the presence or absence of the aerenchyma QTL have been developed that should be useful for genetic and physiological analyses of root aerenchyma formation.  相似文献   

13.
The screening of wild populations for evidence of gene flow from a crop to a wild related species requires the unambiguous detection of crop genes within the genome of the wild species, taking into account the intraspecific variability of each species. If the crop and wild relatives share a common ancestor, as is the case for the Brassica crops and their wild relatives (subtribe Brassiceae), the species-specific markers needed to make this unambiguous detection are difficult to identify. In the model oilseed rape (Brassica napus, AACC, 2n=38)-wild radish (Raphanus raphanistrum, RrRr, 2n=18) system, we utilized the presence or absence of a short-interspersed element (SINE) at a given locus to develop oilseed rape-specific markers, as SINE insertions are irreversible. By means of sequence-specific amplified polymorphism (SINE-SSAP) reactions, we identified and cloned 67 bands specific to the oilseed rape genome and absent from that of wild radish. Forty-seven PCR-specific markers were developed from three combinations of primers anchored either in (1) the 5- and 3-genomic sequences flanking the SINE, (2) the 5-flanking and SINE internal sequences or (3) the SINE internal and flanking 3-sequences. Seventeen markers were monomorphic whatever the oilseed rape varieties tested, whereas 30 revealed polymorphism and behaved either as dominant (17) or co-dominant (13) markers. Polymorphic markers were mapped on 19 genomic regions assigned to ten linkage groups. The markers developed will be efficient tools to trace the occurrence and frequency of introgressions of oilseed rape genomic region within wild radish populations.  相似文献   

14.
Chromosomes of Triportheus nematurus, a fish species from family Characidae, were analyzed in order to establish the conventional karyotype, location of C-band positive heterochromatin, Ag-NORs, GC- and AT-rich sites, and mapping of 18S and 5S rDNA with fluorescence in situ hybridization (FISH). The diploid number found was 2n = 52 chromosomes in both males and females. However, the females presented a pair of differentiated heteromorphic chromosomes, characterizing a ZZ/ZW sex chromosome system. The Z chromosome was metacentric and the largest one in the karyotype, bearing C-positive heterochromatin at pericentromeric and telomeric regions. The W chromosome was middle-sized submetacentric, appearing mostly heterochromatic after C-banding and presenting heterogeneous heterochromatin composed of GC- and AT-rich regions revealed by fluorochrome staining. Ag-NORs were also GC-rich and surrounded by heterochromatic regions, being located at the secondary constriction on the short arms of the second chromosome pair, in agreement with 18S rDNA sites detected with FISH. The 18S and 5S rDNA were aligned in tandem, representing an uncommon situation in fishes. The results obtained reinforce the basal condition of the ZZ/ZW sex system in the genus Triportheus, probably arisen prior to speciation in the group.  相似文献   

15.
Previous studies have shown that two separate loci for 5S DNA sequences may exist within a species. Two size classes have been tentatively assigned in the ranges 327–468 bp (chromosome 1), and 469–500 bp (chromosome 5) and the entire data-base was subjected to various numerical taxonomic analyses. The results confirm the existence of two lineages of 5S DNA sequences represented by the two size classes.Hordeum vulgare is separate from the species known also asCritesion and, together withDasypyrum, occupy an intermediate position between the two size classes. The 5S DNA units fromTriticum spp. that have also been namedAegilops spp. in other classifications appear as a distinct group withinTriticum spp. at both loci. The consensus 5S DNA sequence fromPsathyrostachys is remote fromHordeum s.l. in contrast to opinions based on morphology. Other aspects are detailed and discussed, including the inadequacy of the computing methods used as well as the need for more data in view of the large amount of homoplasy. The merit of using the spacer for phylogenetic inference is also discussed.  相似文献   

16.
Summary Genetic control of the major zein polypeptides in maize (Zea mays L.) was studied by isoelectric focusing (IEF) in agarose. Linkage relationships were determined by making a number of crosses, then determining the expression of zein polypeptides in backcross seeds. Chromosome linkages were determined by using the markers sugary-1 (for chromosome 4), yellow-8, and a waxy 7–9 translocation (for chromosome 7). Nine zeins were in one linkage group on chromosome 4, six in another linkage group on chromosome 4, and four zeins were in one linkage group on chromosome 7. Some IEF single bands consisted of at least two polypeptides, which were detected by subsequent sodium dodecyl sulfate polyacrylamide gel electrophoresis, by aberrant ratios in backcrosses, or by differing recombination percentages. One zein occurred only in homozygous sugary-1 seeds. Three sets of closely-linked zeins were noted that occurred together almost exclusively in certain inbreds.Cooperative investigations of the U.S. Department of Agriculture, Agricultural Research Service, and the Illinois Agricultural Experiment Station, Department of Agronomy, University of Illinois, Urbana, USAMention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Department of Agriculture over other firms or similar products not mentioned  相似文献   

17.
A comprehensive linkage map, including 236 linked markers with a total sex-average map length of about 2300 cM, covering nearly all parts of the pig genome has been established. Linkage groups were assigned to all 18 autosomes, the X chromosome and the X/Y pseudoautosomal region. Several new gene assignments were made including the assignment of linkage group U1 (EAK-HPX) to chromosome 9. The linkage map includes 77 type I loci informative for comparative mapping and 72 in situ mapped markers physically anchoring the linkage groups on chromosomes. A highly significant heterogeneity in recombination rates between sexes was observed with a general tendency towards an excess of female recombination. The average ratio of female to male recombination was estimated at 1–4:1 but this parameter varied between chromosomes as well as between regions within chromosomes. An intriguing finding was that blood group loci were overrepresented at the distal ends of linkage groups.  相似文献   

18.
Adak  T.  Subbarao  Sarala K.  Sharma  V. P. 《Biochemical genetics》1984,22(5-6):483-494
A survey of laboratory strains of Anopheles stephensi for nonspecific esterases by polyacrylamide gel electrophoresis revealed 10 zones of esterase activity. In 3 of the 10 zones, three electromorphs were observed. Genetic analysis revealed that these three zones are controlled by three loci, viz., Est-3, Est-4, and Est-5, and that the electromorphs are codominant alleles at each locus. The three esterase loci were found linked to each other and to an autosomal marker colorless-eye. The esterase loci have tentatively been placed in linkage group II. The probable gene sequence on chromosome 2 is either c-Est-3-Est-4-Est-5 or c-Est-4-Est-3-Est-5.  相似文献   

19.
Mapping of growth hormone releasing hormone receptor to swine chromosome 18   总被引:7,自引:0,他引:7  
The growth hormone releasing hormone receptor (GHRHR) was mapped in the pig for study as a potential candidate gene in controlling pig quantitative growth and carcass characteristics. Primers were designed from the pig GHRHR sequence to amplify a 1·65-kb intronic fragment between exons 6 and 7. By using a pig–rodent somatic cell hybrid panel, GHRHR was mapped to pig chromosome 18 (SSC18) with 100% concordance, and the regional assignment was SSC18q24 with 89% concordance. The polymerase chain reaction–restriction fragment length polymorphisms (PCR–RFLPs) with Mse I and Taq I were developed to confirm this assignment with linkage analysis by using the European Pig Gene Mapping Project (PiGMaP) reference families. Pig GHRHR was mapped with strong linkage to SSC18 markers S0062 and S0120 (lod > 8). The GHRHR and IGFBP3 were found to map near to each other on human chromosome 7 (HSA7), and the pig IGFBP3 gene has been mapped to SSC18 by others. Our mapping of pig GHRHR increases the comparative information available on the SSC18 maps and further confirms the synteny conservation between HSA7 and SSC18.  相似文献   

20.
The Escherichia coli F18 receptor locus (ECF18R) has been genetically mapped to the halothane linkage group on porcine Chromosome (Chr) 6. In an attempt to obtain candidate genes for this locus, we isolated 5 cosmids containing the α(1,2)fucosyltransferase genes FUT1, FUT2, and the pseudogene FUT2P from a porcine genomic library. Mapping by fluorescence in situ hybridization placed all these clones in band q11 of porcine Chr 6 (SSC6q11). Sequence analysis of the cosmids resulted in the characterization of an open reading frame (ORF), 1098 bp in length, that is 82.3% identical to the human FUT1 sequence; a second ORF, 1023 bp in length, 85% identical to the human FUT2 sequence; and a third FUT-like sequence thought to be a pseudogene. The FUT1 and FUT2 loci therefore seem to be the porcine equivalents of the human blood group H and Secretor loci. Direct sequencing of the two ORFs in swine being either susceptible or resistant to adhesion and colonization by F18 fimbriated Escherichia coli (ECF18) revealed two polymorphisms at bp 307 (M307) and bp 857 (M857) of the FUT1 ORF. Analysis of these mutations in 34 Swiss Landrace families with 221 progeny showed close linkage with the locus controlling resistance and susceptibility to E. coli F18 adhesion and colonization in the small intestine (ECF18R), and with the locus of the blood group inhibitor S. A high linkage disequilibrium of M307ECF18R in Large White pigs makes the M307 mutation a good marker for marker-assisted selection of E. coli F18 adhesion-resistant animals in this breed. Whether the FUT1 or possibly the FUT2 gene products are involved in the synthesis of carbohydrate structures responsible for bacterial adhesion remains to be determined. Received: 17 February 1997 / Accepted: 30 May 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号