首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1-adrenaline, ACTH and glucagon activate the adenylate cyclase of rat adipocytes by decreasing its S0.5(Mg2+) (concentration yielding 0.5 Vmax) from its basal value of 11.5 to 1.2, 0.3 and 1.8 mM and by increasing its Ki(ATP4?) from 0.03 to 0.25; 0.62 and 0.16 mM respectively. The kinetic properties of the enzyme are regulated by its state of saturation with ATP4? or Mg2+; its saturation with ATP4? and citrate3? suppressed its basal and hormone-dependent activities. The hormone-dependent decrease in Km and increase in Vmax of the enzyme occur when shifting from suboptimal low concentrations of hormone and Mg2+ to optimal conditions, i.e., high concentration of hormone and low concentration of Mg2+. The increase in the state of saturation of the enzyme with Mg2+ decreases the hormone-dependent effects on Vmax and results in identical values of Km (0.14 mM) for its basal and 1-adrenaline dependent activities. CaCl2 saturation curves at 5 mM ATP with either 5, 10 or 20 mM MgCl2 show that the substitution of 5 mM MgCl2 by 10 mM and 20 mM MgCl2 increased the Ki(Ca2+) of the enzyme from 0.19 to 0.49 and 0.94 mM but decreased its Ki(CaATP) from 0.42 to 0.19 and 0.14 mM respectively. Only when the concentration of MgCl2 exceeded that of ATP did 1-adrenaline and ACTH activate the enzyme by increasing its Ki(Ca2+), although only ACTH increased its Ki(CaATP). An increase in energy charge would decrease the intracellular concentrations of Mg2+ and Ca2+ because ATP4? has stronger binding constants for Mg2+ and Ca2+ than ADP3? and AMP2?. Hence, the reported properties of the enzyme suggests that changes in energy charge may allow for metabolic feedback control of the hormonal responsiveness of the Mg2+, Ca2+, ATP4? -sensitive adenylate cyclase.  相似文献   

2.
In order to gain some information regarding Ca2+-dependent ATPase, the enzyme was purified from cardiac sarcolemma and its properties were compared with Ca2+-ATPase activity of myosin purified from rat heart. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by Ca2+ but the maximal activation of Ca2+-dependent ATPase required 4 mM Ca2+ whereas that of myosin ATPase required 10 mM Ca2+. These ATPases were also activated by other divalent cations in the order of Ca2+ > Mn2+ > Sr2+ > Br2+ > Mg2+; however, there was a marked difference in the pattern of their activation by these cations. Unlike the myosin ATPase, the ATP hydrolysis by Ca2+-dependent ATPase was not activated by actin. The pH optima of Ca2+-dependent ATPase and myosin ATPase were 9.5 and 6.5 respectively. Na+ markedly inhibited Ca2+-dependent ATPase but had no effect on the myosin ATPase activity. N-ethylmaleimide inhibited Ca2+-dependent ATPase more than myosin ATPase whereas the inhibitory effect of vanadate was more on myosin ATPase than Ca2+-dependent ATPase. Both Ca2+-dependent ATPase and myosin ATPase were stimulated by K-EDTA and NH4-EDTA. When myofibrils were treated with trypsin and passed through columns similar to those used for purifying Ca2+-ATPase from sarcolemma, an enzyme with ATPase activity was obtained. This myofibrillar ATPase was maximally activated at 3–4 mM Ca2+ and 3 to 4 mM ATP like sarcolemmal Ca2+-dependent ATPase. K+ stimulated both ATPase activities in the absence of Ca2+ and inhibited in the presence of Ca2+. Both enzymes were inhibited by Na+, Mg2+, La3+, and azide similarly. However, Ca2+ ATPase from myofibrils showed three peptide bands in SDS polyacrylamide gel electrophoresis whereas Ca2+ ATPase from sarcolemma contained only two bands. Sarcolemmal Ca2+-ATPase had two affinity sites for ATP (0.012 mM and 0.23 mM) while myofibrillar Ca2+-ATPase had only one affinity site (0.34 mM). Myofibrillar Ca2+-ATPase was more sensitive to maleic anhydride and iodoacetamide than sarcolemmal Ca2+-ATPase. These observations suggest that Ca2+-dependent ATPase may be a myosin like protein in the heart sarcolemma and is unlikely to be a tryptic fragment of myosin present in the myofibrils.  相似文献   

3.
The possible role of metalloendoproteinase in stimulus-secretion coupling in adrenal chromaffin cells was examined using the metalloendoproteinase inhibitors 1,10-phenanthroline and carbobenzoxy-Gly-Phe-NH2. Catecholamine release elicited by nicotine or by depolarisation with 55 mM K+ was almost completely abolished by 0.5 mM 1,10-phenanthroline. Carbobenzoxy-Gly-Phe-NH2 (2.5 mM) inhibited catecholamine release in response to nicotine but enhanced that due to 55 mM K+. The rise in intracellular free calcium, [Ca2+]i, in response to either nicotine or 55 mM was inhibited by about 50% by both inhibitors. One site of action of metalloendoproteinase inhibitors may, therefore, be at the level of the regulation of [Ca2+]i. Catecholamine release and the rise in [Ca2+]i elicited by the calcium ionophore ionomycin were not reduced by the inhibitors. These results show that metalloendoproteinase inhibitors have complex effects on chromaffin cells including effects on the regulation of [Ca2+]i but do not inhibit calcium-activated exocytosis itself.  相似文献   

4.
The (Ca2+ + Mg2+-ATPase of sarcoplasmic reticulum catalyzes the hydrolysis of acetyl phosphate in the presence of Mg2+ and EGTA and is stimulated by Ca2+. The Mg2+-dependent hydrolysis of acetyl phosphate measured in the presence of 6 mM acetyl phosphate, 5mM MgCl2, and 2 mM EGTA is increased 2-fold by 20% dimethyl sulfoxide. This activity is further stimulated 1.6-fold by the addition of 30 mM KCl. In this condition addition of Ca2+ causes no further increase in the rate of hydrolysis and Ca2+ uptake is reduced to a low level. In leaky vesicles, hydrolysis continues to be back-inhibited by Ca2+ in the millimolar range. Unlike ATP, acetyl phosphate does not inhibit phosphorylation by Pi unless dimethyl sulfoxide is present. The presence of dimethyl sulfoxide also makes it possible to detect Pi inhibition of the Mg2+-dependent acetyl phosphate hydrolysis. These results suggest that dimethyl sulfoxide stabilizes a Pi-reactive form of the enzyme in a conformation that exhibits comparable affinities for acetyl phosphate and Pi. In this conformation the enzyme is transformed from a Ca2+- and Mg2+-dependent ATPase into a (K+ + Mg2+)-ATPase.  相似文献   

5.
Butyrylcholinesterase (BChE, EC 3.1.1.8) has been purified about 6600-fold from human serum with a procedure including ammonium sulfate fractionation (55–70%) with acid step at pH 4.5 and procainamide–Sepharose 4B affinity chromatography. The purified enzyme exhibited negative cooperativity with respect to butyrylthiocholine (BTCh) binding at pH 7.5. KS was found to be 0.128±0.012 mM. Inhibition kinetics of the enzyme by Cd2+, Zn2+ and Al3+ were studied in detail. The 1/v vs 1/[BTCh] plots in the absence (control plot) and in the presence of different concentrations of cations intersected above 1/[BTCh]-axis. The data were analyzed by means of a nonlinear curve fitting program. The results demonstrated that all of the three cations are the linear mixed-type inhibitors of BChE. Ca2+ and Mg2+ had no effect on the enzyme activity in the experimental conditions. But when the enzyme was inhibited by 0.5 mM Cd2+ or Zn2+, Ca2+ and Mg2+ partially reactivated the inhibited allosteric form of BChE. Results were compared with data obtained from brain BChE purified from sheep.  相似文献   

6.
Summary The effect of acidosis on the myocardial Ca2+ distribution was examined at 15°C in ventricular strips of the flounder (Platichthys flesus) and at 30°C in atrial strips of the rat (Rattus norvegicus).Lowering the Ringer pH from 7.6 to 6.9 by increasing its CO2 (flounder 2% to 12%, rat 4% to 14%), resulted in an elevated Ca2+ efflux in resting strips as well as in strips stimulated (12/min) to contraction. A decrease in pH of the Ringer used for the flounder myocardium by a lowering of bicarbonate (30 mM to 5 mM) also resulted in an elevation of the Ca2+ efflux, but the effect was smaller than that produced by an increased CO2.With 11 mM Ca2+ and 10 mM EGTA added to the Ringer to reduce the amount of45Ca2+ bound to extracellular sites, an increased CO2 with a concomitant drop in Ringer pH resulted in an increased Ca2+ efflux in both myocardia. The Ca2+ efflux was only marginally elevated in the flounder myocardium and unchanged in that of rat when the same drop in Ringer pH was produced with a lowering in bicarbonate.In a nominally Ca2+-free Ringer with 0.1 mM EGTA the45Ca2+ efflux was stimulated for both myocardia by an increase in CO2.The flounder myocardium was exposed to high CO2 in a nominally Na+, Ca2+-free Ringer and again the45Ca2+ efflux increased. After a return to Na, Ca and low CO2 in the Ringer, a higher efflux persisted in the strips being subjected to a high CO2 than in the controls.The Ca2+ uptake rate was about the same at high and low CO2 for both myocardia.Based on these results the measured increase in Ca efflux following an increase in CO2 or a decrease in bicarbonate probably results from an elevated cytoplasmatic Ca2+ activity. It seems unlikely that an increased uptake rate of Ca2+ or a direct stimulation of Ca2+ transporting mechanisms in the cell membrane are responsible for the change.  相似文献   

7.
The Ca2+/Mg2+ ATPase of the rat heart sarcolemmal particles was solublized with Triton X-100 after treating the membranes with trypsin and purified by high speed centrifugation, ammonium sulfate fractionation, hydrophobic chromatography and gel filtration. The purified enzyme was seen as a single protein band in nondenaturing polyacrylamide gel electrophoresis and its molecular weight by gel filtration was found to be about 240000. The enzyme utilized Ca-ATP or Mg-ATP as a substrate with high affinity sites (Km = 0.12 – 0.16 mM) and low affinity sites (Km = 1 mM). The enzyme also utilized CTP, GTP, ITP, UTP and ADP as substrates but at a lower rate in comparison to ATP. The enzyme was activated by Ca2+ (Ka = 0.4 mM) and Mg2+ (Ka = 0.2 mM) as well as by other cations in the order Ca2– > Mg2+ > Mn2+ > Sr2+ > Ba2+ > Ni2+ > Cu2+. The ATPase activity in the presence of Ca2+ was markedly inhibited by Mg2+, Mn2+, Ni2+ and Cu2+ whereas the monovalent cations such as Na+ and K+ were without effect. The enzyme did not exhibit Ca2+ stimulated Mg2+ dependent ATPase activity and was insensitive to calmodulin, ouabain, verapamil, D-600, oligomycin, azide and vanadate. Optimum pH for Ca2+ or Mg2+ ATPase activity was 8.5 – 9.0. In view of the possible ectoenzyme nature of the ATPase, its role in adenine nucleotide and Ca2+ metabolism in the myocardium is discussed.  相似文献   

8.
The role of Ca2+ in regulation of platelet actomyosin ATPase activity has been investigated. The results suggest that Ca2+ has at least two roles in the reaction mechanism; (a) it forms a complex with ATP to form the substrate, CaATP and (b) it forms a complex with the protein to activate the enzyme. Both the substrate and free Ca2+ bind cooperatively to the protein. The binding of free Ca2+ stimulates the enzymic activity and causes a change in the apparent Km value. The apparent Km value for CaATP is 0.15mM in the absence of free Ca2+ and 0.07mM in the presence of 2.5mM Ca2+. Thus Ca2+ appears to act as a positive allosteric effector.  相似文献   

9.
The rat liver rhodanese (thiosulphate: cyanide sulfurtransferase EC 2.6.1.1) has been immobilized on polyacrylamide gels. The immobilized enzyme had a pH optimum of 7.4 and Km values of 3.25 mM and 1.12 mM for S2O2?3 and KCN, respectively. The enzyme was competitively inhibited by NaNO2 and CH3COONa and noncompetitively by amyl-nitrite. A modulation of activity was observed in the presence of Ca2+, Zn2+, and Cu2+. The results are discussed in line with the detoxicating function of liver rhodanese.  相似文献   

10.
The effect of Ca2+ on programmed death of guard cells (GC) and epidermal cells (EC) determined from destruction of the cell nucleus was investigated in epidermis of pea leaves. Ca2+ at concentrations of 1–100 μM increased and at a concentration of 1 mM prevented the CN—induced destruction of the nucleus in GC, disrupting the permeability barrier of GC plasma membrane for propidium iodide (PI). Ca2+ at concentrations of 0.1–1 mM enhanced drastically the number of EC nuclei stained by PI in epidermis treated with chitosan, an inducer of programmed cell death. The internucleosomal DNA fragmentation caused by CN? was suppressed by 2 mM Ca2+ on 6 h incubation, but fragmentation was stimulated on more prolonged treatment (16 h). Presumably, the disruption of the permeability barrier of plasma membrane for PI is not a sign of necrosis in plant cells. Quinacrine and diphenylene iodonium at 50 μM concentration prevented GC death induced by CN? or CN? + 0.1 mM Ca2+ but had no influence on respiration and photosynthetic O2 evolution in pea leaf slices. The generation of reactive oxygen species determined from 2′,7′-dichlorofluorescein fluorescence was promoted by Ca2+ in epidermal peels from pea leaves.  相似文献   

11.
The uncoupling of Ca2+ transport from ATP hydrolysis in the sarcoplasmic reticulum (Ca2+ + Mg2+)-ATPase by trypsin digestion was re-investigated by comparing ATPase activity with the ability of the enzyme to occlude Eu3+ (a transport parameter) after various tryptic digests. With this method, re-examination of uncoupling by tryptic digest of the ATPase revealed that TD2 cleavage (Arg-198) had no effect on either occlusion or ATPase activity. Digestion past TD2 in the presence of 5 mM Co2+ and at 25°C resulted in the loss of about 70% of the ATPase activity, but no loss of occlusion. Digestion past TD2 in the presence of 5 mM Ca2+, 3 mM ATP, and at 25°C resulted in a partially uncoupled enzyme complex which retained about 50% of the ATPase activity, but completely lost the ability to occlude Eu3+. Digest past TD2 in the presence of 5 mM Ca2+ and 3 mM AMP-PNP. (a non-hydrolyzable ATP analog) at 25°C resulted in no loss of occlusion, thus revealing the absolute requirement of ATP during the digest to eliminate occlusion. From these findings we conclude that uncoupling of Ca2+ transport from ATPase activity is possible by tryptic digestion of the (Ca2+ + Mg2+)-ATPase. Interestingly, only after phosphorylation of the enzyme do the susceptible bond(s) which lead to the loss of occlusion become exposed to trypsin.  相似文献   

12.
Dual wavelength microfluorometry was utilized to measure the cytoplasmic calcium concentration (Cai 2+) of single parathyroid cells loaded with the indicator fura-2. The method enabled the first registrations of Cai 2+ of normal human parathyroid cells, available only in minute numbers. At 0.5 mM extracellular Ca2+, the Cai 2+ levels were similar in normal human and bovine cells. Both cell types responded with an initial Cai 2+ transient followed by a sustained increase when raising extracellular Ca2+ to 3.0 mM. The sustained effect exhibited a sigmoidal relation to extracellular Ca2+ in the 0.5–3.0 mM range. Although the increase was somewhat greater in the human cells, the half maximal responses were obtained at almost identical extracellular Ca2+ concentrations. Whereas K+ depolarization decreased Cai 2+, the Cai 2+ channel blocker D-600 had dual actions, raising Cai 2+at 0.5 mM Ca2+ and decreasing it at 3.0 mM Cai 2+, and the effects were similar in the bovine and human cells. The present experimental approach verified the validity of utilizing bovine cells as controls in studies of human parathyroid tissue and it appears suitable for analysis of the role of different subpopulations of parathyroid cells in the abnormal parathyroid tissue of patients with hyperparathyroidism.  相似文献   

13.
Na+ accumulation was investigated in the roots of 11-d-old cowpea [Vigna unguiculata (L.) Walp.] plants. The relative contribution of different membrane transporters on Na+ uptake was estimated by applying Ca2+, K+, NH4 +, and pharmacological inhibitors. Na+ accumulation into the root symplast was decreased by half in the presence of 1 mM Ca2+ and it was almost abolished by 100 mM K+. The inhibitory effect of external NH4+ on Na+ accumulation was more pronounced in the roots of NH4 +-free growing plants. Na+ accumulation was reduced about 73 % by 0.1 mM flufenamate and it was almost blocked by 2 mM quinine. In addition, 20 mM tetraethylammonium and 1.0 mM Cs+ decreased Na+ accumulation by 28 and 30 %, respectively. These results evidenced that low-affinity Na+ uptake by cowpea roots depends on Ca2+-sensitive and Ca2+-insensitive pathways. The Ca2+-sensitive pathway is probably mediated by nonselective cation channels and the Ca2+-insensitive one may involve K+ channels and to a lesser extent NH4 +-sensitive K+ transporters.  相似文献   

14.
Phosphatidylinositol-specific phospholipase C was purified from the soluble fraction of suspension-cultured rice cells. The apparent molecular weight of rice enzyme was estimated to be 50,000 by both Sephadex G-100 gel filtration and SDS–polyacrylamide gel electrophoresis, indicating that the enzyme is composed of a single polypeptide. The enzyme had an isoelectric point of 6.3. The soluble phospholipase C had a high degree of specificity toward phosphatidylinositol and a weak activity toward phosphatidyl-inositol monophosphate, while the enzyme did not hydrolyze the other phospholipids or p-nitrophenylphosphorylcholine. Vmax and Km values were 5.0, μmol/min/mg protein and 0.3 mM, respectively. The pH dependency of the enzyme activity was sharp with an optimum of 5.2. In addition, the phospholipase C was a Ca2+ -dependent enzyme. The marked activation of enzyme was observed in the presence of 10 to 250, μM Ca2+ and higher Ca 2+ concentrations than 1 mM had a strong inhibitory effect. A possible regulation of the phospholipase C activity by pH and Ca2+ concentrations in the rice cells is discussed.  相似文献   

15.
The goat spermatozoa membranes isolated after treatment with octa (ethylene glycol) mono n-dodecyl ether (C12E8) followed by discontinuous sucrose density gradient centrifugation have been found to contain an ATPase that is stimulated by externally added Ca2+ only. The membrane fraction has also found to contain Mg2+-dependent Ca2+-ATPase activity, however the former activity is about 2 fold higher than the latter. The molecular weight of the enzyme is found to be about 97,000 on SDS-polyacrylamide gel. The optimum concentration of Ca2+ required for maximum activity is 3 mM for both Mg2+-dependent and Mg2+-independent Ca2+-ATPase. Histidine and imidazole buffers are found to be the most suitable for dependent and independent enzyme activities respectively. ATP with an optimum concentration of 4 mM is observed to be the best substrate than any other nucleotides. The inhibitors like trifluoperazine and vanadate and group specific probes e.g. DTNB and TNBS inhibit these two enzymes but at different rates. Ca2+-uptake study shows that the uptake in the presence of Ca2+ and ATP is higher than in the presence of Mg2+, Ca2+ and ATP. The findings lead us to believe that the Mg2+-independent Ca2+-ATPase has some role in Ca2+ transport like Mg2+-dependent enzyme.Abbreviations Tris Tris (hydroxymethyl) amino ethane - Hepes-N 2-hydroxy ethyl piperizine-N1-2-ethane sulfonic acid - Pipes-Piperizine-N N1-bis(2-ethane sulfonic acid) - EGTA Ethylene Glycol-bis (-amino ethyl ether) - N, N, N1, N1 Tetraacetic Acid, sodium salt - TFP Trifluoperazine - DTNB 5,51 Dithiobis (2 nitrobenzoic acid) - TNBS 2, 4, 6-Trinitrobenzene Sulfonate - C12E8 Octa (ethylene glycol) mono n-dodecyl ether - PMSF Phenylmethyl Sulfonyl Fluoride - PAGE Polyacrylamide Gel Electrophoresis - PME -Mercapto Ethanol  相似文献   

16.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

17.
Previous studies from this laboratory have indicated that tricyclohexyltin hydroxide (Plictran) is a potent inhibitor of both basal- and isoproterenol-stimulated cardiac sarcoplasmic reticulum (SR) Ca2+-ATPase, with an estimated IC-50 of 2.5 × 10?8M. The present studies were initiated to evaluate the mechanism of inhibition of Ca2+-ATPase by Plictran. Data on substrate and cationic activation kinetics of Ca2+-ATPase indicated alteration of Vmax and Km by Plictran (1 and 5×10?8M), suggesting a mixed type of inhibition. The beta-adrenergic agonist isoproterenol increased Vmax of both ATP- and Ca2+-dependent enzyme activities. However, the Km of enzyme was decreased only for Ca2+ Plictran inhibited isoproterenol-stimulated Ca2+-ATPase activity by altering both and Vmax and Km of ATP as well as Ca2+-dependent enzyme activities, suggesting that after binding to a single independent site, Plictran inhibits enzyme catalysis by decreasing the affinity of enzyme for ATP as well as for Ca2+ Preincubation of enzyme with 15 μM cAMP or the addition of 2mM ATP to the reaction mixture resulted in slight activation of Plictran-inhibited enzyme. Pretreatment of SR with 5 × 10?7M propranolol and 5 × 10?8M Plictran resulted in inhibition of basal activity in addition to the loss of stimulated activity. Preincubation of heart SR preparation with 5 × 10?5M coenzyme A in combination with 5 × 10?8M Plictran partly restored the beta-adrenergic stimulation. These results suggest that some critical sites common to both basal- and beta-adrenergic-stimulated Ca2+-ATPase are sensitive to binding by Plictran, and the resultant conformational change may lead to inhibition of beta-adrenergic stimulation.  相似文献   

18.
Extracellular ATP dose dependently stimulated 45Ca2+ influx even in the presence of nifedipine, a Ca2+ antagonist that inhibits voltage-dependent Ca2+ channel, in osteoblast-like MC3T3-E1 cells. ATP stimulated arachidonic acid release and the synthesis of prostaglandin E2 (PGE2). However, the ATP-induced arachidonic acid release was significantly reduced by chelating extracellular Ca2+ with EGTA. On the other hand, ATP induced DNA synthesis of these cells in a dose-dependent manner in the range between 1μM and 1 mM. The pretreatment with indomethacin, a cyclooxygenase inhibitor, suppressed both ATP-induced PGE2 synthesis and DNA synthesis in these cells. The inhibitory effect by 50μM indomethacin on the DNA synthesis was reversed by adding 10μM PGE2. These results strongly suggest that extracellular ATP stimulates Ca2+ influx resulting in the release of arachidonic acid in osteoblast-like cells and that extracellular ATP-induced proliferative effect is mediated, at least in part, by ATP-stimulated PGE2 synthesis.  相似文献   

19.
Jun Nakamura 《BBA》1983,723(2):182-190
The effects of ATP on Ca2+ binding in the absence of added Mg2+ to the purified sarcoplasmic reticulum Ca2+-ATPase were studied at pH 7.0 and 0°C. ATP increased the number of Ca2+-binding sites of the enzyme from 2 to 3 mol per mol of phosphorylatable enzyme. The association constant for the ATP-induced Ca2+ binding was 4·105 M?1, which was not significantly different from that obtained in the absence of ATP. AdoP[CH2]PP has little effect on the Ca2+-binding process. The amount of phosphoenzyme formed was equivalent to the level of ATP-induced Ca2+ binding. ADP decreased the level of ATP-induced Ca2+ binding and phosphoenzyme by the same amount. These results suggest that ATP-induced Ca2+ binding exists in the form of an ADP-reactive phosphoenzyme·Ca complex. In addition, the Ca2+ bound to the enzyme in the presence of ATP was released on the addition of 1 mM MgCl2; after the release of Ca2+, the phosphoenzyme decayed. These observations suggest that Mg2+, added after the ATP-induced Ca2+-binding process, may replace the Ca2+ on the phosphoenzyme and initiate phosphoenzyme decomposition.  相似文献   

20.
Extracellular calcium (Ca2+) and store-operated Ca2+ entry (SOCE) govern homoeostasis in the mammalian epidermis. Multiple microRNAs (miRNA) also regulate epidermal differentiation, and raised external Ca2+ modulates the expression of several such miRNAs in keratinocytes. However, little is known about the regulation of miR-184 in keratinocytes or the roles of miR-184 in keratinocyte differentiation. Here we report that exogenous Ca2+ stimulates miR-184 expression in primary epidermal keratinocytes and that this occurs in a SOCE-dependent manner. Levels of miR-184 were raised by about 30-fold after exposure to 1.5 mM Ca2+ for 5 days. In contrast, neither phorbol ester nor 1,25-dihydroxyvitamin D3 had any effect on miR-184 levels. Pharmacologic and genetic inhibitors of SOCE abrogated Ca2+-dependent miR-184 induction by 70% or more. Ectopic miR-184 inhibited keratinocyte proliferation and led to a fourfold increase in the expression of involucrin, a marker of early keratinocyte differentiation. Exogenous miR-184 also triggered a threefold rise in levels of cyclin E and doubled the levels of γH2AX, a marker of DNA double-strand breaks. The p21 cyclin-dependent kinase inhibitor, which supports keratinocyte growth arrest, was also induced by miR-184. Together our findings point to an SOCE:miR-184 pathway that targets a cyclin E/DNA damage regulatory node to facilitate keratinocyte differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号