首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stathmin is a 19 kDa cytosolic phosphoprotein, proposed to act as a relay integrating diverse intracellular signaling pathways involved in regulation of cell proliferation, differentiation, and function. To gain further information about its significance during early development, we analyzed stathmin expression and subcellular localization in mouse oocytes and preimplantation embryos. RT‐PCR analysis revealed a low expression of stathmin mRNA in unfertilized oocytes and a higher expression at the blastocyst stage. A fine cytoplasmic punctuate fluorescent immunoreactive stathmin pattern was detected in the oocyte, while it evolved toward an increasingly speckled pattern in the two‐cell and later four‐ to eight‐cell embryo, with even larger speckles at the morula stage. In blastocysts, stathmin immunoreactivity was fine and intense in inner cell mass cells, whereas it was low and variable in trophectodermal cells. Electron microscopic analysis allowed visualization with more detail of two types of stathmin immunolocalization: small clusters in the cytoplasm of oocytes and blastocyst cells, together with loosely arranged clusters around the outer membrane of cytoplasmic vesicles, corresponding to the immunofluorescent speckles in embryos until the morula stage. In conclusion, it appears from our results that maternal stathmin is accumulated in the oocyte and is relocalized within the oocyte and early preimplantation embryonic cell cytoplasm to interact with specific cytoplasmic membrane formations. Probably newly synthesized, embryonic stathmin is expressed in the blastocyst, where it is localized more uniformly in the cytoplasm mostly of inner cell mass (ICM) cells. These expression and localization patterns are probably related to the particular roles of stathmin at the successive steps of oocyte maturation and early embryonic development. They further support the proposed physiologic importance of stathmin in essential biologic regulation. Mol. Reprod. Dev. 53:306–317, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

2.
Embryonal carcinoma (EC) cells, which are the malignant stem cells of teratocarcinomas, are considered similar to early embryo cells. The EC cells can be grown in vitro, and many of them can be experimentally induced to differentiate; upon differentiation, the cells become benign. Here we review some of the changes that take place in the cellular and molecular characteristics of murine F9 EC cells as they differentiate into endodermal cells. Upon differentiation of F9 cells, distinct changes occur in their cell surface molecules, cytoskeleton-associated proteins and cell adhesion properties. Simultaneously, the rate of cell proliferation decreases due to a dramatic increase in duration of G1 and S phases of the cell cycle. The changes in gene expression and cell behavior occurring during endodermal differentiation of EC cells closely resemble those occurring when the endoderm differentiates in the embryo. Teratocarcinoma stem cell lines may thus be exploited to enhance understanding of both teratoma-type neoplasms and embryonic development.  相似文献   

3.
We have studied the expression of c-src and c-abl proto-oncogenes in early mouse development using embryonal carcinoma (EC) cells as a model system, and compared this to the expression pattern in adult tissues. In all three EC lines tested (F9, PC13, and P19), c-src and c-abl mRNA can be detected. When F9 and PC13 are induced to differentiate they form endodermal cells characteristic of the early embryo, and we found no change in c-src or c-abl expression. In contrast, P19 cells showed increased levels of both mRNAs both mRNAs when induced to differentiate along the neural pathway by retinoic acid, whereas differentiation along the muscle pathway by dimethyl sulfoxide resulted in decreased levels of c-abl expression. These results are consistent with the idea that c-src and c-abl have important functions in the differentiation of the cell types of the later embryo, but not in those of the early embryo.  相似文献   

4.
Stathmin is a ubiquitous soluble protein (Mr approximately 19,000; pI approximately 6.2-5.5) whose phosphorylation is associated with the intracellular mechanisms involved in the regulations of cell differentiation and functions by extracellular effectors. It is present in various tissues and cell types and has several nonphosphorylated and increasingly phosphorylated forms, and it is particularly abundant in brain. Very high concentrations of stathmin were also detected in mouse embryo striatal neurons grown in primary culture, whereas stathmin was barely detectable in astrocytes from the same source. Stathmin appeared in neurons as a major substrate for protein phosphorylation and, in particular, for the cyclic AMP (cAMP)-dependent protein kinase, because its phosphorylation was stimulated by cAMP in cell-free preparations and in intact cells by forskolin, a potent activator of adenylate cyclase. During brain ontogenesis, stathmin was first detected at embryonic day 12; its concentration increased until birth and then decreased from postnatal day 10 to adulthood. In parallel, its molecular forms shifted from the least phosphorylated to the more phosphorylated ones. This result may reflect the evolution of the activity of stathmin during development and the subsequent maturation of the brain. In conclusion, our results substantiate the likely role of stathmin as an intracellular relay of extracellular regulations, as they point out its specific importance related to neuronal functions and brain differentiation.  相似文献   

5.
Stathmin is a 19-kDa phosphoprotein presumably involved in regulations of cell proliferation, differentiation, and functions as an intracellular relay for extracellular signals activating diverse second messenger pathways. Antisera prepared against the whole protein or against two peptides (residues 15-27 and 134-149) recognized the two isoforms (alpha and beta) of stathmin in their different phosphorylated states on immunoblots. Also, the possible existence of a family of stathmin-related proteins is suggested by the detection with some sera of proteins of 17, 21, and 60 kDa in brain. Stathmin and its diverse molecular forms were detected in all mouse tissues tested, in varying concentrations. Depending on the tissue, it is 2-100 times more abundant in the neonate than in the adult. It is most abundant in brain at both developmental stages, the protein levels being paralleled by the expression of the corresponding mRNA as detected with a specific cDNA probe. Antibodies directed against the rat protein also reacted with stathmin-like proteins in the brain of other mammals, birds, reptiles, amphibians, and some fish species, and the various isoforms could be recognized on immunoblots. In conclusion, our results suggest that stathmin is most likely involved in two distinct types of regulations: 1) "developmental" regulations, related to cell proliferation, differentiation, and maturation, and 2) "functional" regulations mostly at the adult stage, and typically in the nervous system. In addition, stathmin is also phylogenetically well conserved at least in vertebrates. Together, these observations support the proposed ubiquitous nature and general importance of stathmin in biological regulations.  相似文献   

6.
Eddé B  Jakob H  Darmon M 《The EMBO journal》1983,2(9):1473-1478
Two multipotential embryonal carcinoma (EC) cell lines, 1003 and 1009, can be induced to form preferentially neural derivatives in vitro. Synthesis of specific proteins during neural differentiation was followed by two-dimensional gel electrophoresis. The comparison of protein patterns obtained with neural and non-neural derivatives of these EC cell lines indicates that two changes are specific for the neural pathway: (i) the appearance of a new beta-tubulin isoform and (ii) the accumulation of the brain isozyme of creatine phosphokinase already present in small amounts in EC stem cells. These changes were found to take place early in the course of differentiation and to occur even when neurite outgrowth was prevented.  相似文献   

7.
8.
Stathmin, which functions as an intracellular relay in signal transduction pathways, has been suggested as a potential indicator of pluripotent cells in the early mouse embryo. In this study, chicken stathmin cDNA and genomic DNA were analyzed. In mammals stathmin consists of five exons and four introns; exons 3, 4, and 5 in the mammalian stathmin gene are equivalent to one relatively large exon in the chicken stathmin gene. Introns equivalent to introns 3 and 4 in the mammalian stathmin gene are not present in the counterpart gene in chickens and, although intron 2 was shown to be present in both mammals and birds, it is smaller in the chicken stathmin gene. Despite differences in the genomic organization of the gene and its smaller size in chickens compared with that in humans and mice, similarities in the coding sequences and in the expression of the chicken and mouse stathmin genes at certain stages of embryo development, as determined by whole-mount in situ hybridization experiments, suggest that their products are functional homologues. The argument is thus substantiated for further investigations into the use of regulatory regions of the stathmin gene in a system for the establishment of long-term cultures of germline competent chicken embryonic stem (ES) cells by the selective ablation of differentiated cells in culture using drug selection.  相似文献   

9.
Stathmin (Oncoprotein18), a signal transduction regulatory factor, plays an important role in cell division and malignant tumor development. Stathmin is a ubiquitous intracellular phosphoprotein that is overexpressed in a variety of human malignancies, including osteosarcoma. To investigate the potential use of stathmin as a therapeutic target for human osteosarcomas, we employed RNA interference [small interfering RNA (siRNA)] to reduce stathmin expression in human osteosarcoma cell lines and analyzed their phenotypic changes. Results showed that the downregulation of stathmin expression in human osteosarcoma cells significantly inhibited cell proliferation in vitro and tumorigenicity in vivo. The specific downregulation induced cell arrest in the G(2)/M phase of cell cycle and eventually apoptotic cell death. Taxanes are a group of effective chemotherapeutic agents whose activity is mediated through stabilization of the microtubules of the mitotic spindle. In the present study, we also observed a synergistic enhancement of the cytotoxicity effect by combination use of taxanes and RNA interference-mediated stathmin downregulation. All these experimental data indicate that stathmin downregulation can lead to potent antitumor activity and chemosensitizing activity to taxanes in human osteosarcomas.  相似文献   

10.
《The Journal of cell biology》1996,133(6):1383-1390
Stathmin is a ubiquitous cytosolic protein which undergoes extensive phosphorylation in response to a variety of external signals. It is highly abundant in developing neurons. The use of antisense oligonucleotides which selectively block stathmin expression has allowed us to study directly its role in rat PC12 cells. We show that stathmin depletion prevents nerve growth factor (NGF)-stimulated differentiation of PC12 cells into sympathetic-like neurons although the expression of several NGF-inducible genes was not affected. Furthermore, we found that stathmin phosphorylation in PC12 cells which is induced by NGF depends on mitogen-activated protein kinase (MAPK) activity. We conclude that stathmin is an essential component of the NGF-induced MAPK signaling pathway and performs a key role during differentiation of developing neurons.  相似文献   

11.
Monoclonal antibody 75.12 raised against the human ovarian teratocarcinoma cell line PA1 detects a 'Y' or iso-leb glycosidic structure. Using the 75.12 antibody we have established that the Y antigen is expressed on some but not all mouse embryonal carcinoma (EC) lines. The Y or 75.12 antigen-positive EC cell lines F9 and PCC4 cease to express the antigen after differentiation induced with retinoic acid and this decreased expression parallels the morphological differentiation of the EC cells. These results support not only the idea that carbohydrate structures present on embryonic cells undergo marked alteration during differentiation, but also that established mouse EC cells may differ in their differentiation states.  相似文献   

12.
13.
The role of stathmin in the regulation of the cell cycle   总被引:24,自引:0,他引:24  
Stathmin is the founding member of a family of proteins that play critically important roles in the regulation of the microtubule cytoskeleton. Stathmin regulates microtubule dynamics by promoting depolymerization of microtubules and/or preventing polymerization of tubulin heterodimers. Upon entry into mitosis, microtubules polymerize to form the mitotic spindle, a cellular structure that is essential for accurate chromosome segregation and cell division. The microtubule-depolymerizing activity of stathmin is switched off at the onset of mitosis by phosphorylation to allow microtubule polymerization and assembly of the mitotic spindle. Phosphorylated stathmin has to be reactivated by dephosphorylation before cells exit mitosis and enter a new interphase. Interfering with stathmin function by forced expression or inhibition of expression results in reduced cellular proliferation and accumulation of cells in the G2/M phases of the cell cycle. Forced expression of stathmin leads to abnormalities in or a total lack of mitotic spindle assembly and arrest of cells in the early stages of mitosis. On the other hand, inhibition of stathmin expression leads to accumulation of cells in the G2/M phases and is associated with severe mitotic spindle abnormalities and difficulty in the exit from mitosis. Thus, stathmin is critically important not only for the formation of a normal mitotic spindle upon entry into mitosis but also for the regulation of the function of the mitotic spindle in the later stages of mitosis and for the timely exit from mitosis. In this review, we summarize the early studies that led to the identification of the important mitotic function of stathmin and discuss the present understanding of its role in the regulation of microtubules dynamics during cell-cycle progression. We also describe briefly other less mature avenues of investigation which suggest that stathmin may participate in other important biological functions and speculate about the future directions that research in this rapidly developing field may take.  相似文献   

14.
Multiple heat shock cognate (hsc70) cDNA clones were isolated from the mouse embryonal carcinoma cell line F9. They all encode a single 72-kDa protein, which is constitutively expressed in all mouse cell lines and tissues tested, and which is only slightly induced by hyperthermia. hsc70 RNA is very abundant in F9 stem cells and brain, but very little is found in 14-day-old embryos. Upon differentiation of F9 stem cells induced by retinoic acid and cyclic AMP, expression of the hsc70 gene decreases only slightly, suggesting that hsc70 is highly expressed in early mouse development and is then down-regulated towards the end of embryogenesis. In adult tissues only the brain retains the high level of hsc70 gene expression found in F9 stem cells. We also show that expression of hsc70 protein and clathrin is uncoupled in F9 cells, indicating that the uncoating activity of coated vesicles may not be the only function of hsc70 protein.  相似文献   

15.
16.
17.
18.
19.
Parathyroid hormone related peptide (PTHrP), first identified in tumors from patients with the syndrome of "Humoral Hypercalcemia of Malignancy," can replace parathyroid hormone (PTH) in activating the PTH-receptor in responsive cells. Although PTHrP expression is widespread in various adult and fetal tissues, its normal biological function is as yet unknown. We have examined the possible role of PTHrP and the PTH/PTHrP-receptor in early mouse embryo development. Using F9 embryonal carcinoma (EC) cells and ES-5 embryonic stem (ES) cells as in vitro models, we demonstrate that during the differentiation of these cells towards primitive and parietal endoderm-like phenotypes, PTH/PTHrP-receptor mRNA is induced. This phenomenon is correlated with the appearance of functional adenylate cyclase coupled PTH/PTHrP- receptors. These receptors are the mouse homologues of the recently cloned rat bone and opossum kidney PTH/PTHrP-receptors. Addition of exogenous PTH or PTHrP to RA-treated EC or ES cells is an efficient replacement for dBcAMP in inducing full parietal endoderm differentiation. Endogenous PTHrP is detectable at very low levels in undifferentiated EC and ES cells, and is upregulated in their primitive and parietal endoderm-like derivatives as assessed by immunofluorescence. Using confocal laser scanning microscopy on preimplantation mouse embryos, PTHrP is detected from the late morula stage onwards in developing trophectoderm cells, but not in inner cell mass cells. In blastocyst stages PTHrP is in addition found in the first endoderm derivatives of the inner cell mass. Together these results indicate that the PTH/PTHrP-receptor signalling system serves as a para- or autocrine mechanism for parietal endoderm differentiation in the early mouse embryo, thus constituting the earliest hormone receptor system involved in embryogenesis defined to date.  相似文献   

20.
The study of early human development is of great importance but has been limited by the lack of suitable reagents. Recently, however, the human embryonal carcinoma (EC) cell line NT2D1 has been isolated. This cell line will differentiate upon exposure to retinoic acid (RA). A cDNA library was constructed from poly(A)+ RNA derived from NT2D1 cells treated with 10(-5) M-RA for 7 days (delta NT2D1 cells). By differential cDNA screening, it was found that 1.12% of delta NT2D1 cDNA recombinants screened detected an increase in signal with 32P-cDNAs derived from delta NT2D1 as compared with NT2D1. To compare RA-induced differentiation of mouse and human EC cells, the delta NT2D1 cDNA library was rescreened with 32P-cDNAs derived from the mouse EC cell line F9 and the result compared with 32P-cDNA derived from F9 differentiated to parietalendoderm (F9PE)-like cells and visceral-endoderm (F9VE)-like cells. Approximately 1.2% of the delta NT2D1 cDNA recombinants detected a differential increase in signal following differentiation of mouse EC cells to F9VE and/or F9PE. Of these homologous regulated sequences, 0.3% were common to both mouse and human EC cell RA-induced differentiation. Five different cDNA clones were isolated that detect a marked increase (5- to 75-fold) in mRNA abundance following RA-induced differentiation of NT2D1. Of these five clones, three detect homologous mRNAs which also increase in abundance following differentiation of the mouse EC cell line F9 to PE- and/or VE-like cells; the other two clones do not detect sequences in the mouse mRNAs tested. One clone shows homology to SPARC, a gene known to be regulated during mouse embryonic development. While another clone, SO5A, has a limited range of expression, being detected in F9VE and in a human parietal-endoderm-like cell, but not in F9PE and a human visceral-endoderm-like cell. This work shows that there are both similarities and differences in mouse and human EC cell differentiation, and these cDNA clones provide some of the first reagents for studying the molecular biology of human development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号