首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Members of the calcium-activated chloride channel (CLCA) gene family have been suggested to possess a variety of functions including cell adhesion and tumor suppression. Expression of CLCA family members has mostly been analyzed in non-neural tissues. Here we describe the expression of mouse and human CLCA genes in the nervous system.  相似文献   

2.
3.
The human CLCA4 (chloride channel regulator, calcium-activated) modulates the intestinal phenotype of cystic fibrosis (CF) patients via an as yet unknown pathway. With the generation of new porcine CF models, species-specific differences between human modifiers of CF and their porcine orthologs are considered critical for the translation of experimental data. Specifically, the porcine ortholog to the human CF modulator gene CLCA4 has recently been shown to be duplicated into two separate genes, CLCA4a and CLCA4b. Here, we characterize the duplication product, CLCA4b, in terms of its genomic structure, tissue and cellular expression patterns as well as its in vitro electrophysiological properties. The CLCA4b gene is a pig-specific duplication product of the CLCA4 ancestor and its protein is exclusively expressed in small and large intestinal crypt epithelial cells, a niche specifically occupied by no other porcine CLCA family member. Surprisingly, a unique deleterious mutation of the CLCA4b gene is spread among modern and ancient breeds in the pig population, but this mutation did not result in an apparent phenotype in homozygously affected animals. Electrophysiologically, neither the products of the wild type nor of the mutated CLCA4b genes were able to evoke a calcium-activated anion conductance, a consensus feature of other CLCA proteins. The apparently pig-specific duplication of the CLCA4 gene with unique expression of the CLCA4b protein variant in intestinal crypt epithelial cells where the porcine CFTR is also present raises the question of whether it may modulate the porcine CF phenotype. Moreover, the naturally occurring null variant of CLCA4b will be valuable for the understanding of CLCA protein function and their relevance in modulating the CF phenotype.  相似文献   

4.
Despite the discovery of the widely expressed CLCA (chloride channel regulators, calcium-activated) proteins more than 15?years ago, their seemingly diverse functions are still poorly understood. With the recent generation of porcine animal models for cystic fibrosis (CF), members of the porcine CLCA family are becoming of interest as possible modulators of the disease in the pig. Here, we characterize pCLCA2, the porcine ortholog of the human hCLCA2 and the murine mCLCA5, which are the only CLCA members expressed in the skin. Immunohistochemical studies with a specific antibody against pCLCA2 have revealed a highly restricted pCLCA2 protein expression in the skin. The protein is strictly co-localized with filaggrin and trichohyalin in the granular layer of the epidermis and the inner root sheath of the hair follicles, respectively. No differences have been observed between the expression patterns of wild-type pigs and CF transmembrane conductance regulator -/- pigs. We speculate that pCLCA2 plays an as yet undefined role in the structural integrity of the skin or, possibly, in specialized functions of the epidermis, including barrier or defense mechanisms.  相似文献   

5.
6.
The chloride channel calcium-activated (CLCA) family are secreted proteins that regulate both chloride transport and mucin expression, thus controlling the production of mucus in respiratory and other systems. Accordingly, human CLCA1 is a critical mediator of hypersecretory lung diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis, that manifest mucus obstruction. Despite relevance to homeostasis and disease, the mechanism of CLCA1 function remains largely undefined. We address this void by showing that CLCA proteins contain a consensus proteolytic cleavage site recognized by a novel zincin metalloprotease domain located within the N terminus of CLCA itself. CLCA1 mutations that inhibit self-cleavage prevent activation of calcium-activated chloride channel (CaCC)-mediated chloride transport. CaCC activation requires cleavage to unmask the N-terminal fragment of CLCA1, which can independently gate CaCCs. Gating of CaCCs mediated by CLCA1 does not appear to involve proteolytic cleavage of the channel because a mutant N-terminal fragment deficient in proteolytic activity is able to induce currents comparable with that of the native fragment. These data provide both a mechanistic basis for CLCA1 self-cleavage and a novel mechanism for regulation of chloride channel activity specific to the mucosal interface.  相似文献   

7.

Background

Chloride channel accessory 1 (CLCA1) belongs to the calcium-sensitive chloride conductance protein family, which is mainly expressed in the colon, small intestine and appendix. This study was conducted to investigate the functions and mechanisms of CLCA1 in colorectal cancer (CRC).

Methods

The CLCA1 protein expression level in CRC patients was evaluated by enzyme-linked immunosorbent assay (ELISA), immunohistochemistry (IHC), and western blotting analysis. Using CRISPR/Cas9 technology, CLCA1-upregulated (CLCA1-ACT) and CLCA1-knockout cells (CLCA1-KO), as well as their respective negative controls (CLCA1-ACT-NC and CLCA1-KO-NC), were constructed from the SW620 cell line. Cell growth and metastatic ability were assessed both in vitro and in vivo. The association of CLCA1 with epithelial-mesenchymal transition (EMT) and other signaling pathways was determined by western blotting assays.

Results

The expression level of CLCA1 in CRC tissues was significantly decreased compared with that in adjacent normal tissue (P< 0.05). Meanwhile, the serum concentration of CLCA1 in CRC patients was also significantly lower when compared with that of healthy controls (1.48?±?1.06 ng/mL vs 1.06?±?0.73 ng/mL, P?=?0.0018). In addition, CLCA1 serum concentration and mRNA expression level in CRC tissues were inversely correlated with CRC metastasis and tumor stage. Upregulated CLCA1 suppressed CRC growth and metastasis in vitro and in vivo, whereas inhibition of CLCA1 led to the opposite results. Increased expression levels of CLCA1 could repress Wnt signaling and the EMT process in CRC cells.

Conclusions

Our findings suggest that increased expression levels of CLCA1 can suppress CRC aggressiveness. CLCA1 functions as a tumor suppressor possibly via inhibition of the Wnt/beta-catenin signaling pathway and the EMT process.
  相似文献   

8.
1-Aminocyclopropane-1-carboxylate synthase (ACS) catalyzes the rate-limiting step in the ethylene biosynthetic pathway in plants. The Arabidopsis genome encodes nine ACS polypeptides that form eight functional (ACS2, ACS4-9, and ACS11) homodimers and one nonfunctional (ACS1) homodimer. Transgenic Arabidopsis lines were constructed expressing the beta-glucuronidase (GUS) and green fluorescence protein (GFP) reporter genes from the promoter of each of the gene family members to determine their patterns of expression during plant development. All genes, except ACS9, are expressed in 5-d-old etiolated or light-grown seedlings yielding distinct patterns of GUS staining. ACS9 expression is detected later in development. Unique and overlapping expression patterns were detected for all the family members in various organs of adult plants. ACS11 is uniquely expressed in the trichomes of sepals and ACS1 in the replum. Overlapping expression was observed in hypocotyl, roots, various parts of the flower (sepals, pedicle, style, etc.) and in the stigmatic and abscission zones of the silique. Exogenous indole-3-acetic acid (IAA) enhances the constitutive expression of ACS2, 4, 5, 6, 7, 8, and 11 in the root. Wounding of hypocotyl tissue inhibits the constitutive expression of ACS1 and ACS5 and induces the expression of ACS2, 4, 6, 7, 8, and 11. Inducers of ethylene production such as cold, heat, anaerobiosis, and Li(+) ions enhance or suppress the expression of various members of the gene family in the root of light-grown seedlings. Examination of GUS expression in transverse sections of cotyledons reveals that all ACS genes, except ACS9, are expressed in the epidermis cell layer, guard cells, and vascular tissue. Similar analysis with root tip tissue treated with IAA reveals unique and overlapping expression patterns in the various cell types of the lateral root cap, cell division, and cell expansion zones. IAA inducibility is gene-specific and cell type-dependent across the root tip zone. This limited comparative exploration of ACS gene family expression reveals constitutive spatial and temporal expression patterns of all gene family members throughout the growth period examined. The unique and overlapping gene activity pattern detected reveals a combinatorial code of spatio-temporal coexpression among the various gene family members during plant development. This raises the prospect that functional ACS heterodimers may be formed in planta.  相似文献   

9.
Protein-tyrosine phosphatases (PTPs) have an important role in cell survival, differentiation, proliferation, migration and other cellular processes in conjunction with protein-tyrosine kinases. Still relatively little is known about the function of PTPs in vivo. We set out to systematically identify all classical PTPs in the zebrafish genome and characterize their expression patterns during zebrafish development. We identified 48 PTP genes in the zebrafish genome by BLASTing of human PTP sequences. We verified all in silico hits by sequencing and established the spatio-temporal expression patterns of all PTPs by in situ hybridization of zebrafish embryos at six distinct developmental stages. The zebrafish genome encodes 48 PTP genes. 14 human orthologs are duplicated in the zebrafish genome and 3 human orthologs were not identified. Based on sequence conservation, most zebrafish orthologues of human PTP genes were readily assigned. Interestingly, the duplicated form of ptpn23, a catalytically inactive PTP, has lost its PTP domain, indicating that PTP activity is not required for its function, or that ptpn23b has lost its PTP domain in the course of evolution. All 48 PTPs are expressed in zebrafish embryos. Most PTPs are maternally provided and are broadly expressed early on. PTP expression becomes progressively restricted during development. Interestingly, some duplicated genes retained their expression pattern, whereas expression of other duplicated genes was distinct or even mutually exclusive, suggesting that the function of the latter PTPs has diverged. In conclusion, we have identified all members of the family of classical PTPs in the zebrafish genome and established their expression patterns. This is the first time the expression patterns of all members of the large family of PTP genes have been established in a vertebrate. Our results provide the first step towards elucidation of the function of the family of classical PTPs.  相似文献   

10.
Members of the CLCA protein family are expressed in airway and intestinal epithelium, where they may participate in secretory activity as mediators of chloride conductance. A calcium-dependent chloride conductance has been observed upon expression of CLCA proteins in non-epithelial cell lines. The pCLCA1 gene, cloned in our laboratory, codes for a product containing a unique A-kinase consensus acceptor site not found in other CLCA proteins. Calcium-dependent, but not cAMP-dependent, chloride conductance increased when pCLCA1 was expressed in NIH/3T3 fibroblasts. We transfected the Caco-2 human colon carcinoma cell line with pCLCA1 to investigate the regulation of CLCA-associated chloride conductance in this differentiated epithelial cell line. Expression of pCLCA1 in the Caco-2 cell line enhanced cAMP-responsive 36Cl efflux, short circuit current, and whole cell chloride current in these cells. This cAMP-dependent chloride conductance was localized to the apical membrane of polarized Caco-2 cells.  相似文献   

11.
Breaking the balance between proliferation and differentiation in animal cells can lead to cancer, but the mechanisms maintaining this balance remain largely undefined. The calcium activated chloride channel A1 (CLCA1) is a member of the calcium sensitive chloride conductance family of proteins and is expressed mainly in the colon, small intestine and appendix. We show that CLCA1 plays a functional role in differentiation and proliferation of Caco-2 cells and of intestinal tissue. Caco-2 cells spontaneously differentiate either in confluent culture or when treated with butyrate, a molecule present naturally in the diet. Here, we compared CLCA1 expressional levels between patients with and without colorectal cancer (CRC) and determined the functional role of CLCA1 in differentiation and proliferation of Caco-2 cells. We showed that: 1) CLCA1 and CLCA4 expression were down-regulated significantly in CRC patients; 2) CLCA1 expression was up-regulated in Caco-2 cells induced to differentiate by confluent culture or by treatment with sodium butyrate (NaBT); 3) Knockdown of CLCA1 with siRNA significantly inhibited cell differentiation and promoted cell proliferation in Caco-2 confluent cultures, and 4) In Caco-2 3D culture, suppression of CLCA1 significantly increased cell proliferation and compromised NaBT-induced inhibition of proliferation. In conclusion, CLCA1 may contribute to promoting spontaneous differentiation and reducing proliferation of Caco-2 cells and may be a target of NaBT-induced inhibition of proliferation and therefore a potential diagnostic marker for CRC prognosis.  相似文献   

12.
Recent studies have identified members of the CLCA (chloride channels, calcium-activated) gene family as potential modulators of the cystic fibrosis (CF) phenotype, but differences between the human and murine CLCA genes and proteins may limit the use of murine CF models. Recently established pig models of CF are expected to mimic the human disease more closely than the available mouse models do. Here, we characterized the porcine CLCA gene locus, analyzed the expression pattern and protein processing of pCLCA1, and compared it to its human ortholog, hCLCA1. The porcine CLCA gene family is located on chromosome 4q25, with a broad synteny with the human and murine clca gene loci, except for a pig-specific gene duplication of pCLCA4. Using pCLCA1-specific antibodies, the protein was immunohistochemically localized in mucin-producing cells, including goblet cells and mucinous glands in the respiratory and alimentary tracts. Similar to hCLCA1, biochemical characterization of pCLCA1 identified a secreted soluble protein that could serve as an extracellular signaling molecule or functional constituent of the protective mucous layers. The results suggest that pCLCA1 shares essential characteristics of hCLCA1, supporting the pig model as a promising tool for studying the modulating role of pCLCA1 in the complex pathology of CF. (J Histochem Cytochem 57:1169–1181, 2009)  相似文献   

13.
The CLCA family of proteins consists of a growing number of structurally and functionally diverse members with distinct expression patterns in different tissues. Several CLCA homologs have been implicated in diseases with secretory dysfunctions in the respiratory and intestinal tracts. Here we present biochemical protein characterization and details on the cellular and subcellular expression pattern of the murine mCLCA6 using specific antibodies directed against the amino- and carboxy-terminal cleavage products of mCLCA6. Computational and biochemical characterizations revealed protein processing and structural elements shared with hCLCA2 including anchorage in the apical cell membrane by a transmembrane domain in the carboxy-terminal subunit. A systematic light- and electron-microscopic immunolocalization found mCLCA6 to be associated with the microvilli of non-goblet cell enterocytes in the murine small and large intestine but in no other tissues. The expression pattern was confirmed by quantitative RT-PCR following laser-capture microdissection of relevant tissues. Confocal laser scanning microscopy colocalized the mCLCA6 protein with the cystic fibrosis transmembrane conductance regulator CFTR at the apical surface of colonic crypt cells. Together with previously published functional data, the results support a direct or indirect role of mCLCA6 in transepithelial anion conductance in the mouse intestine.  相似文献   

14.
15.
The actinin-associated LIM protein (ALP) genes belong to the PDZ/LIM protein family which is characterized by the presence of both a PDZ and a LIM domain. The ALP subfamily in mammals has four members: ALP, Elfin, Mystique and RIL. In this study, we have annotated and cloned the zebrafish ALP gene family and identified a zebrafish-specific fifth member of the family, the alp-like gene. We compared the zebrafish sequences to their human and mouse orthologues. A phylogenetic analysis based on the amino acid sequences showed the overall high degree of conservation within the family. We describe here the expression patterns for all five ALP family genes during zebrafish development. Whole mount in situ hybridization results revealed common and distinct expression patterns for the five genes. With the exception of elfin, all genes were expressed as maternal RNAs at early developmental stages. Gene expression for all of them appeared regulated and localized in specific regions at the eight different developmental stages studied. Expression for all five genes was observed in the central nervous system (CNS), which led us to further investigate brain-specific expression in sections of embryos at 2 days of development. In summary, we identified the zebrafish orthologues of the ALP family and determined their gene expression patterns during zebrafish embryogenesis. Finally, we compare our results to the limited expression data available for this gene family during mammalian development.  相似文献   

16.
Connexin genes are involved in several human diseases such as hearing and dermatological and peripheral nerve disorders. Connexins are protein units of gap junctions and form homotypic, heterotypic, or heteromeric complexes known as connexons. Data on the expression patterns of members of this family are partial and fragmentary. We therefore cloned all the identifiable murine homologs of human CONNEXIN genes and analyzed their expression patterns in embryonic and neonatal mouse tissues. We found that connexins are preferentially expressed in tissues derived from ectoderm and/or endoderm. Our data provide a comprehensive and detailed atlas of expression of connexin genes and in some cases suggest possible interactions of proteins that are coexpressed in the same tissue. Knowledge of temporal and spatial distribution of connexins also allows the identification of candidate genes for human diseases and provides important insight into mechanisms that lead to human disorders due to mutations in CONNEXIN genes.  相似文献   

17.
18.
CLCA2 is a p53-, p63-inducible transmembrane protein that is frequently downregulated in breast cancer. It is induced during differentiation of human mammary epithelial cells, and its knockdown causes epithelial-to-mesenchymal transition (EMT). To determine how CLCA2 promotes epithelial differentiation, we searched for interactors using membrane dihybrid screening. We discovered a strong interaction with the cell junctional protein EVA1 (Epithelial V-like Antigen 1) and confirmed it by co-immunoprecipitation. Like CLCA2, EVA1 is a type I transmembrane protein that is regulated by p53 and p63. It is thought to mediate homophilic cell-cell adhesion in diverse epithelial tissues. We found that EVA1 is frequently downregulated in breast tumors and breast cancer cell lines, especially those of mesenchymal phenotype. Moreover, knockdown of EVA1 in immortalized human mammary epithelial cells (HMEC) caused EMT, implying that EVA1 is essential for epithelial differentiation. Both EVA1 and CLCA2 co-localized with E-cadherin at cell-cell junctions. The interacting domains were delimited by deletion analysis, revealing the site of interaction to be the transmembrane segment (TMS). The primary sequence of the CLCA2 TMS was found to be conserved in CLCA2 orthologs throughout mammals, suggesting that its interaction with EVA1 co-evolved with the mammary gland. A screen for other junctional interactors revealed that CLCA2 was involved in two different complexes, one with EVA1 and ZO-1, the other with beta catenin. Overexpression of CLCA2 caused downregulation of beta catenin and beta catenin-activated genes. Thus, CLCA2 links a junctional adhesion molecule to cytosolic signaling proteins that modulate proliferation and differentiation. These results may explain how attenuation of CLCA2 causes EMT and why CLCA2 and EVA1 are frequently downregulated in metastatic breast cancer cell lines.  相似文献   

19.
There are 10 gene families that have members on both human chromosome 6 (6p21.3, the location of the human major histocompatibility complex [MHC]) and human chromosome 9 (mostly 9q33-34). Six of these families also have members on mouse chromosome 17 (the mouse MHC chromosome) and mouse chromosome 2. In addition, four of these families have members on human chromosome 1 (1q21-25 and 1p13), and two of these have members on mouse chromosome 1. One hypothesis to explain these patterns is that members of the 10 gene families of human chromosomes 6 and 9 were duplicated simultaneously as a result of polyploidization or duplication of a chromosome segment ("block duplication"). A subsequent block duplication has been proposed to account for the presence of representatives of four of these families on human chromosome 1. Phylogenetic analyses of the 9 gene families for which data were available decisively rejected the hypothesis of block duplication as an overall explanation of these patterns. Three to five of the genes on human chromosomes 6 and 9 probably duplicated simultaneously early in vertebrate history, prior to the divergence of jawed and jawless vertebrates, and shortly after that, all four of the genes on chromosomes 1 and 9 probably duplicated as a block. However, the other genes duplicated at different times scattered over at least 1.6 billion years. Since the occurrence of these clusters of related genes cannot be explained by block duplication, one alternative explanation is that they cluster together because of shared functional characteristics relating to expression patterns.   相似文献   

20.
The regulatory behavior, inhibitor sensitivity, and properties of the whole cell chloride conductance observed in cells expressing the cDNA coding for a chloride conductance mediator isoform of the CLCA gene family, pCLCA1, have been studied. Common C-kinase consensus phosphorylation sites between pCLCA1 and the closely related human isoform hCLCA1 are consistent with a role for calcium in channel activation. Both channels are activated rapidly on exposure to the calcium ionophore ionomycin. Direct involvement of calcium in the activation of pCLCA1 was supported by the finding that treatment with the intracellular calcium chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM reduced the rate of chloride efflux from NIH/3T3 cells expressing the pCLCA1 channel. No combination of A-kinase activators used was effective in activating chloride efflux via this channel despite the presence of a unique strong A-kinase consensus site in pCLCA1. Notable differences of pCLCA1 from the reported properties of CLCA family members include the failure of phorbol 12-myristate 13-acetate to activate chloride efflux in cells expressing pCLCA1 and a lack of inhibition of chloride efflux from these cells after treatment with DIDS or dithiothreitol. However, selected inhibitors of anionic conductance inhibited pCLCA1-dependent anion efflux. The electrogenic nature of the ionomycin-dependent efflux of chloride from cells expressing pCLCA1 was confirmed by detection of outwardly rectifying chloride current and inhibition of this current by chloride conductance inhibitors in a whole cell patch-clamp study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号