首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Gessler  G A Bruns 《Genomics》1988,3(2):117-123
Chromosome 11p13 is frequently rearranged in individuals with the WAGR syndrome (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) or parts of this syndrome. To map the cytogenetic aberrations molecularly, we screened DNA from cell lines with known WAGR-related chromosome abnormalities for rearrangements with pulsed field gel (PFG) analysis using probes deleted from one chromosome 11 homolog of a WAGR patient. The first alteration was detected in a cell line from an individual with aniridia, genitourinary anomalies, mental retardation, and a deletion described as 11p14.1-p13. We have located one breakpoint close to probe HU11-164B and we have cloned both breakpoint sites as well as the junctional fragment. The breakpoints subdivide current intervals on the genetic map, and the probes for both sides will serve as important additional markers for a long-range restriction map of this region. Further characterization and sequencing of the breakpoints may yield insight into the mechanisms by which these deletions occur.  相似文献   

2.
Hitch-hiking from HRAS1 to the WAGR locus with CMGT markers.   总被引:6,自引:0,他引:6       下载免费PDF全文
The clinical association of Wilms' tumour with aniridia, genitourinary abnormalities and mental retardation (WAGR syndrome) is characterised cytogenetically by variable length, constitutional deletion of the short arm of chromosome 11, which always includes at least part of band 11p13. HRAS1-selected chromosome mediated gene transfer (CMGT) generated a transformant, E65-6, in which the only human genes retained map either to band 11p13 or, with HRAS1, in the region 11p15.4-pter. Human recombinants isolated from E65-6 were mapped to a panel of five WAGR deletion hybrids and two clinically related translocations. We show that E65-6 is enriched congruent to 400-fold for 11p15.4-pter markers and congruent to 200-fold for 11p13 markers. 'Hitch-hiking' from HRAS1 with CMGT markers has allowed us to define seven discrete intervals which subtend band 11p13. Both associated translocations co-locate within the smallest region of overlap for the WAGR locus, which has been redefined by identifying a new interval closer than FSHB.  相似文献   

3.
A deletion map of the WAGR region on chromosome 11.   总被引:10,自引:2,他引:8       下载免费PDF全文
The WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) region has been assigned to chromosome 11p13 on the basis of overlapping constitutional deletions found in affected individuals. We have utilized 31 DNA probes which map to the WAGR deletion region, together with six reference loci and 13 WAGR-related deletions, to subdivide this area into 16 intervals. Specific intervals have been correlated with phenotypic features, leading to the identification of individual subregions for the aniridia and Wilms tumor loci. Delineation, by specific probes, of multiple intervals above and below the critical region and of five intervals within the overlap area provides a framework map for molecular characterization of WAGR gene loci and of deletion boundary regions.  相似文献   

4.
Children with constitutional deletions of chromosome 11p13 suffer from aniridia, genitourinary malformations, and mental retardation and are predisposed to develop bilateral Wilms tumor (the WAGR syndrome). The critical region for these defects has been narrowed to a segment of band 11p13 between the catalase and the beta-follicle-stimulating hormone genes. In this report, we have cloned the endpoints from a WAGR patient whose large cytogenetic deletion, del(11)(p14.3::p13), does not include the catalase gene. The deletion was characterized using DNA polymorphisms and found to originate in the paternally derived chromosome 11. The distal endpoint was identified as a rearrangement of locus D11S21 in conventional Southern blots of the patient's genomic DNA, but was not detected in leukocyte DNA from either parent or in sperm DNA from the father. The proximal endpoint was isolated by cloning the junction fragment and was mapped in relation to other markers and breakpoints. It defines a new locus in 11p13-delta J, which is close to the Wilms tumor gene and the breakpoint cluster region (TCL2) of the frequent t(11;14)(p13;q11) translocation in acute T-cell leukemia. An unusual concentration of base pair substitutions was discovered at delta J, in which 9 of 44 restriction sites tested (greater than 20%) vary in the population. This property makes delta J one of the most polymorphic loci on chromosome 11 and may reflect an underlying instability that contributed to the original mutation. The breakpoint extends the genetic map of this region and provides a useful marker for linkage studies and the analysis of allelic segregation in tumor cells.  相似文献   

5.
T Glaser  E Rose  H Morse  D Housman  C Jones 《Genomics》1990,6(1):48-64
The irradiation-fusion technique offers a means to isolate intact subchromosomal fragments of one mammalian species in the genetic background of another. Irradiation-reduced somatic cell hybrids can be used to construct detailed genetic and physical maps of individual chromosome bands and to systematically clone genes responsible for hereditary diseases on the basis of their chromosomal position. To assess this strategy, we constructed a panel of hybrids that selectively retain the portion of human chromosome band 11p13 that includes genes responsible for Wilms tumor, aniridia, genitourinary anomalies, and mental retardation (constituting the WAGR syndrome). A hamster-human hybrid containing the short arm of chromosome 11 as its only human DNA (J1-11) was gamma-irradiated and fused to a Chinese hamster cell line (CHO-K1). We selected secondary hybrid clones that express MIC1 but not MER2, cell-surface antigens encoded by bands 11p13 and 11p15, respectively. These clones were characterized cytogenetically by in situ hybridization with human repetitive DNA and were tested for their retention of 56 DNA, isozyme, and antigen markers whose order on chromosome 11p is known. These cell lines appear to carry single, coherent segments of 11p spanning MIC1, which range in size from 3000 kb to more than 50,000 kb and which are generally stable in the absence of selection. In addition to the selected region of 11p13, two cell lines carry extra fragments of the human centromere and two harbor small, unstable segments of 11p15. As a first step to determine the size and molecular organization of the WAGR gene complex, we analyzed a subset of reduced hybrids by pulsed-field gel electrophoresis. A small group of NotI restriction fragments comprising the WAGR complex was detected in Southern blots with a cloned Alu repetitive probe. One of the cell lines (GH3A) was found to carry a stable approximately 3000-kb segment of 11p13 as its only human DNA. The segment encompasses MIC1, a recurrent translocation breakpoint in acute T-cell leukemia (TCL2), and most or all of the WAGR gene complex, but does not include the close flanking markers D11S16 and delta J. This hybrid forms an ideal source of molecular clones for the developmentally fascinating genes underlying the WAGR syndrome.  相似文献   

6.
Definition of the limits of the Wilms tumor locus on human chromosome 11p13   总被引:3,自引:0,他引:3  
In a previous report, we described a contiguous restriction map of chromosome band 11p13 that localized the Wilms tumor locus to a small group of NotI fragments. In an effort to identify and isolate the 11p13-associated sporadic Wilms tumor locus, we developed a panel of NotI fragment-specific DNA probes. These probes were selected from genomic libraries constructed using the Chinese hamster ovary-human somatic cell hybrid carrying only human 11p. The libraries were prepared from NotI-digested DNA after size selection by pulsed-field gel electrophoresis. The selected NotI fragments had been previously targeted on the basis of deletion mapping as having a high probability of containing the Wilms tumor locus. We used these newly identified 11p13-specific probes to improve the resolution of the restriction map spanning the Wilms tumor locus. The locus has been defined by a homozygous deletion in a sporadic Wilms tumor. Using these probes, the region of homozygous deletion in this tumor and presumably all or part of the Wilms tumor gene have been confined to two small SfiI fragments spanning less than 350 kb.  相似文献   

7.
8.
A fine structure physical map of the short arm of chromosome 5.   总被引:7,自引:4,他引:3       下载免费PDF全文
A series of somatic cell hybrids that retain abnormal chromosomes 5 from 11 different persons with deletions or translocations involving 5p have been isolated. One hundred twenty DNA fragments isolated from a genomic library enriched for sequences from 5p were regionally localized by Southern blot analysis of the hybrid cell deletion mapping panel, including five DNA fragments that reveal restriction fragment length polymorphisms. The fine structure physical map of 5p together with the identification of additional polymorphic loci will facilitate the construction of a complete linkage map of this region. In addition, DNA fragments localized to a region near the 5p15.2-5p15.3 border, which appears to be the segment of 5p that is critical in producing the phenotype associated with the cri du chat syndrome when it is rendered hemizygous by deletion, will be useful in a molecular and DNA level analysis of this deletion syndrome.  相似文献   

9.
To map in detail the human gene for brain derived neurotrophic factor (BDNF) we have used a PCR-based assay to amplify the gene from somatic cell hybrids containing human chromosome 11 with deletion or translocation breakpoints in the WAGR region. The BDNF gene maps between the FSHB and HVBS1 loci, an interval of approximately 4 Mb at the boundary of 11p13 and 11p14.  相似文献   

10.
Summary Genes implicated in the development of Wilms' tumour (WT) and aniridia (AN2) have been localised to a subregion of band p13 on chromosome 11 by molecular and cytogenetic characterisation of WAGR syndrome patients carrying variable constitutional deletions. Polymorphic markers for the region would be valuable for linkage analysis in the familial forms of both Wilms' tumour and aniridia, as well as for studying somatic rearrangements of chromosome 11 in a variety of tumour types. Here we describe the isolation and characterisation of three frequently polymorphic arbitrary DNA fragments that map proximal to the AN2 and WT loci.  相似文献   

11.
The WT1 gene was analysed using DNA from a Wilms' tumour derived from a patient with the WAGR syndrome using single strand conformation polymorphism analysis and polymerase chain reaction sequencing. A 14-bp insertion was found in the intron part of the splice donor site of exon 7 and was a tandem duplication of an upstream exon sequence. This mutation would be expected to disrupt the correct processing of the WT1 mRNA and is predicted to result in a non-functional protein. This observation further supports the role of WT1 in Wilms' tumorigenesis in patients with constitutional 11p13 deletions.  相似文献   

12.
Summary The short arm of chromosome 11 carries genes involved in malformation syndromes, including the aniridia/genitourinary abnormalities/mental retardation (WAGR) syndrome and the Beckwith-Wiedemann syndrome, both of which are associated with an increased risk of childhood malignancy. Evidence comes from constitutional chromosomal aberrations and from losses of heterozygosity, limited to tumor cells, involving regions 11p13 and 11p15. In order to map the genes involved more precisely, we have fused a mouse cell line with cell lines from patients with constitutional deletions or translocations. Characterization of somatic cell hybrids with 11p-specific DNA markers has allowed us to subdivide the short arm into 11 subregions, 7 of which belong to band 11p13. We have thus defined the smallest region of overlap for the Wilms' tumor locus bracketed by the closest proximal and distal breakpoints in two of these hybrids. The region associated with the Beckwith-Wiedemann syndrome spans the region flanked by two 11p15.5 markers, HRAS1 and HBB. These hybrids also represent useful tools for mapping new markers to this region of the human genome.  相似文献   

13.
Summary Most patients with the complex association aniridia — predisposition to Wilms' tumor (WAGR syndrome) present with a de novo constitutional deletion of band 11p13. We report a patient with WAGR syndrome and a reciprocal translocation between chromosomes 5 and 11 t(5;11)(q11;p13). High resolution banding cytogenetic analysis and molecular characterization using 11p13 DNA markers showed a tiny deletion encompassing the gene for CAT but sparing the gene for FSHB. This suggests that syndromes associated with apparently balanced translocations may be due to undetectable loss of material at the breakpoint(s) rather than to breakage in the gene itself.  相似文献   

14.
Wilms tumor (WT) is one of the more common childhood cancers. A small fraction of WT occurs in association with aniridia, genitourinary abnormalities and mental retardation, the WAGR syndrome, and these cases often are accompanied by a constitutional deletion of all or part of band 11p13. Recently a WT susceptibility gene (WT1), localized to 11p13, has been isolated and shown to be inactivated in some sporadic WTs. In the present study, a highly informative CA repeat polymorphism within the gene was studied in a family with six affected members in three generations. Predisposition to WT in this large family did not segregate with this polymorphism. Furthermore, linkage analysis indicated exclusion of WT predisposition from 11p15. These results provide definitive evidence that familial predisposition to WT can be mediated by a gene other than WT1.  相似文献   

15.
Transiently activating (A-type) potassium (K) channels are important regulators of action potential and action potential firing frequencies. HK1 designates the first human cDNA that is highly homologous to the rat RCK4 cDNA that codes for an A-type K-channel. The HK1 channel is expressed in heart. By somatic cell hybrid analysis, the HK1 gene has been assigned to human chromosome 11p13-p14, the WAGR deletion region (Wilms tumor, aniridia, genito-urinary abnormalities and mental retardation). Subsequent pulsed field gel (PFG) analysis and comparison with the well-established PFG map of this region localized the gene to 11p14, 200–600kb telomeric to the FSHB gene.  相似文献   

16.
One restriction enzyme map of Staphylococcus aureus bacteriophage phi 11 DNA was established by reciprocal double digestions with the enzymes EcoRI, HaeII, and KpnI. The sequential order of the EcoRI fragments was thereafter established by a novel approach involving blotting of DNA partially cleaved with EcoRI and the probing the blots with nick-translated terminal fragments. A circular map of the phi 11 DNA was established, and the phage genome was circularly permuted based on the failure to end label mature viral DNA, restriction maps of replicating DNA, and finally, homoduplex analysis in the electron microscope. A restriction enzyme map of the prophage form of phi 11 DNA was obtained by analysis of chromosomal DNA from a lysogenic strain.  相似文献   

17.
18.
A human aniridia candidate (AN) gene on chromosome 11p13 has been cloned and characterized. The AN gene is the second cloned gene of the contiguous genes syndrome WAGR (Wilms' tumor, aniridia, genitourinary malformations, mental retardation) on chromosome 11p13, WT1 being the first gene cloned. Knowledge about the position of the AN and WT1 genes on the map of 11p13 makes the risk assessment for Wilms' tumor development in AN patients possible. In this study, we analyzed familial and sporadic aniridia patients for deletions in 11p13 by cytogenetic analyses, in situ hybridization, and pulsed field gel electrophoresis (PFGE). Cytogenetically visible deletions were found in 3/11 sporadic AN cases and in one AN/WT patient, and submicroscopic deletions were identified in two sporadic AN/WT patients and in 1/9 AN families. The exact extent of the deletions was determined with PFGE and, as a result, we could delineate the risk for Wilms' tumor development. Future analyses of specific deletion endpoints in individual AN cases with the 11p13 deletion should result in a more precise risk assessment for these patients.  相似文献   

19.
We describe a family in whom the phenotypically normal father carries a balanced insertional translocation, ins(14;11)(q23;p12p14). This individual fathered three mentally retarded children, two with a del(11)(p13) and one with a dup(11)(p13). Two other cases of a de novo del(11)(p13) are also described. All four del(11)(p13) cases presented with WAGR, a complex syndrome associated with a predisposition to Wilms' tumor (WT), aniridia (A), genitourinary abnormalities (G), and mental retardation (R). Using an approach combining karyotype analysis, determination of the gene copy number, and RFLP studies employing five 11p13 DNA markers, we were able to define the chromosomal rearrangement involved in each case. Analysis of these WAGR deletions provides further subdivision of band p13 on chromosome 11.  相似文献   

20.
Children with associated Wilms' tumor, aniridia, genitourinary malformations, and mental retardation (WAGR syndrome) frequently have a cytogenetically visible germ line deletion of chromosomal band 11p13. In accordance with the Knudson hypothesis of two-hit carcinogenesis, the absence of this chromosomal band suggests that loss of both alleles of a gene at 11p13 causes Wilms' tumor. Consistent with this model, chromosomes from sporadically occurring Wilms' tumor cells frequently show loss of allelic heterozygosity at polymorphic 11p15 loci, and therefore it has been assumed that allelic loss extends proximally to include 11p13. We report here that in samples from five sporadic Wilms' tumors, allelic loss occurred distal to the WAGR locus on 11p13. In cells from one tumor, mitotic recombination occurred distal to the gamma-globin gene on 11p15.5. Thus, allelic loss in sporadic Wilms' tumor cells may involve a second locus on 11p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号