首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The self-associative properties of apolipoprotein A-I(Milano) (apoA-I(M)) were investigated in relationship to its anion exchange behavior on Q-Sepharose-HP with and without the addition of urea as a denaturant. Self-association was dependent on protein and urea concentration and both influenced interactions of the protein with the chromatographic surface. In the absence of urea, apoA-I(M) was highly associated and existed primarily as a mixture of homodimer, tetramer and hexamer forms. Under these conditions, since the binding strength was greater for the oligomer forms, broad, asymmetrical peaks were obtained in both isocratic and gradient elution. Adding urea depressed self-association and caused unfolding. This resulted in sharper peaks but also decreased the binding strength. Thus, under these conditions chromatographic elution occurred at lower salt concentrations. The adsorption isotherms obtained at high protein loadings were also influenced by self-association and by the varying binding strength of the differently associated and unfolded forms. The isotherms were thus dependent on protein, urea, and salt concentration. Maximum binding capacity was obtained in the absence of urea, where adsorption of oligomers was shown to be dominant. Adding urea reduced the apparent binding capacity and weakened the apparent binding strength. A steric mass action model accounting for competitive binding of the multiple associated forms was used to successfully describe the equilibrium binding behavior using parameters determined from isocratic elution and isotherm experiments.  相似文献   

2.
B W Patterson  A M Lee 《Biochemistry》1986,25(17):4953-4957
Kinetic turnover studies of apolipoprotein metabolism often utilize radioiodinated tracers. These studies rely on the "tracer assumption" that the modified tracer is physiologically and metabolically identical with the native unmodified tracer. This paper addresses the validity of this assumption on the basis of the examination of the state of self-association and binding properties with egg yolk phosphatidylcholine small unilamellar vesicles of native and iodinated apolipoprotein A-I (apoA-I). Human apoA-I was iodinated to the extent of 1.0 and 3.7 mol of nonradioactive iodine/mol of protein. At concentrations from 0.013 to 0.8 mg/mL, iodinated apoA-I underwent concentration-dependent self-association similar to that of native apoA-I as evidenced by circular dichroism and gel filtration. At all concentrations, however, the iodinated preparations were more highly self-associated as judged by gel filtration in relation to the extent of iodination. Scatchard analysis of fluorometric titrations of apoA-I/vesicle interactions demonstrated that the binding capacity of vesicles for apoA-I increased and apoA-I binding affinity decreased upon iodination. In addition, the kinetics of apoA-I binding to vesicles was enhanced by iodination. The affinity, capacity, and kinetics of apoA-I binding were each altered 2-3-fold dependent on the extent of iodination. Since the dynamic interactions of apoA-I are perturbed by iodination, one may legitimately question whether the "tracer assumption" is valid for 125I-apoA-I under all experimental conditions.  相似文献   

3.
Experimental data regarding the thermodynamics and kinetics of adsorption of lispro, an insulin variant, onto a YMC ODS-A column, from an aqueous solution of acetonitrile (31%) and TFA are reinterpreted, using a more complex model of the mass transfer kinetics. The adsorption behavior follows the Toth isotherm model, suggesting either a strongly heterogeneous surface or, rather, that when insulin molecules adsorb they contact the surface along different areas of the molecule. The lumped pore diffusion (POR) model of chromatography accounts well for the band profiles. The internal mass transfer resistances are higher than expected, which suggests that intraparticle diffusion is slower. Furthermore, the pore diffusion coefficient increases with decreasing sample size. That surface diffusion accounts for the mass transfer kinetics inside particles explains these results. Assuming that the gradient of the surface concentration is the driving force of surface diffusion, it is possible to account very well for the band profiles of samples of widely different sizes, using a single value of the surface diffusivity.  相似文献   

4.
We have studied the equilibrium uptake behavior and mass transfer rate of recombinant apolipoprotein A-I(Milano) (apo A-I(M)) on Q Sepharose HP under non-denaturing, partially denaturing, and fully denaturing conditions. The protein of interest in this study is composed of amphipathic alpha helices that serve to solubilize and transport lipids. The dual nature of this molecule leads to the formation of micellar-like structures and self association in solution. Under non-denaturing conditions equilibrium uptake is 134 mg/mL media and the isotherm is essentially rectangular. When fully denatured with 6 M urea, the equilibrium binding capacity decreases to 25 mg/mL media and the isotherm becomes less favorable. The decrease in both binding affinity and media capacity when the protein is completely denatured with 6 M urea can be explained by the loss of all alpha helical structure. The rate of apo A-I(M) mass transfer on Q Sepharose HP was characterized using a macropore diffusion model. Results of modeling studies indicate that effective pore diffusivity increases from 4.5 x 10(-9) cm2/s in the absence of urea to 6.0 x 10(-8) cm2/s when apo A-I(M) is fully denatured with 6 M urea. Based on light-scattering data reported for apo A-I, protein self association appears to be the dominant cause of slow protein mass transfer observed under non-denaturing conditions.  相似文献   

5.
During chemical denaturation different intermediate states are populated or suppressed due to the nature of the denaturant used. Chemical denaturation by guanidine-HCl (GuHCl) of human carbonic anhydrase II (HCA II) leads to a three-state unfolding process (Cm,NI=1.0 and Cm,IU=1.9 M GuHCl) with formation of an equilibrium molten-globule intermediate that is stable at moderate concentrations of the denaturant (1-2 M) with a maximum at 1.5 M GuHCl. On the contrary, urea denaturation gives rise to an apparent two-state unfolding transition (Cm=4.4 M urea). However, 8-anilino-1-naphthalene sulfonate (ANS) binding and decreased refolding capacity revealed the presence of the molten globule in the middle of the unfolding transition zone, although to a lesser extent than in GuHCl. Cross-linking studies showed the formation of moderate oligomer sized (300 kDa) and large soluble aggregates (>1000 kDa). Inclusion of 1.5 M NaCl to the urea denaturant to mimic the ionic character of GuHCl leads to a three-state unfolding behavior (Cm,NI=3.0 and Cm,IU=6.4 M urea) with a significantly stabilized molten-globule intermediate by the chloride salt. Comparisons between NaCl and LiCl of the impact on the stability of the various states of HCA II in urea showed that the effects followed what could be expected from the Hofmeister series, where Li+ is a chaotropic ion leading to decreased stability of the native state. Salt addition to the completely urea unfolded HCA II also led to an aggregation prone unfolded state, that has not been observed before for carbonic anhydrase. Refolding from this state only provided low recoveries of native enzyme.  相似文献   

6.
J Zhao  DQ Lin  SJ Yao 《Carbohydrate polymers》2012,90(4):1764-1770
The adsorption properties toward rutin of a cyclodextrin polymer adsorbent CroCD-TuC 3 have been studied. The adsorption capacity is reduced as temperature and pH of solution rises, but increases with the increase of solvent polarity. Compared with Sephadex? G-15 dextran gel beads, CroCD-TuC 3 shows dramatically higher isosteric enthalpy due to a significant contribution of rutin/β-cyclodextrin inclusion complex formation in CroCD-TuC 3 skeleton. A highlight in our study is that the pore diffusion model has been employed to describe the mass transfer inside the adsorbent pores. It reveals that the diffusion inside the pores is the rate-restricting step in the whole adsorption process. The effective pore diffusivity of rutin in CroCD-TuC 3 calculated is much lower than the diffusivity in diluted solution. The pore diffusion model is an available tool to investigate the profile of mass transfer inside the pores, and provides an effective method to describe adsorption kinetics.  相似文献   

7.
The tertiary structure of apolipoprotein (apo) A-I and the contributions of structural domains to the properties of the protein molecule are not well defined. We used a series of engineered human and mouse apoA-I molecules in a range of physical-biochemical measurements to address this issue. Circular dichroism measurements of alpha-helix thermal unfolding and fluorescence spectroscopy measurements of 8-anilino-1-napthalenesulfonic acid binding indicate that removal of the C-terminal 54 amino acid residues from human and mouse apoA-I has similar effects; the molecules are only slightly destabilized, and there is a decrease in hydrophobic surface exposure. These results are consistent with both human and mouse apoA-I adopting a two-domain tertiary structure, comprising an N-terminal antiparallel helix bundle domain and a separate less ordered C-terminal domain. Mouse apoA-I is significantly less resistant than human apoA-I to thermal and chemical denaturation; the midpoint of thermal unfolding of mouse apoA-I at 45 degrees C is 15 degrees C lower and the midpoint of guanidine hydrochloride denaturation (D1/2) occurs at 0.5 M as compared to 1.0 M for human apoA-I. These differences reflect the overall greater stability of the helix bundle formed by residues 1-189 in human apoA-I. Measurements of the heats of binding to egg phosphatidylcholine (PC) small unilamellar vesicles and the kinetics of solubilization of dimyristoyl PC multilamellar vesicles indicate that the more stable human helix bundle interacts poorly with lipids as compared to the equivalent mouse N-terminal domain. The C-terminal domain of human apoA-I is much more hydrophobic than that of mouse apoA-I; in the lipid-free state the human C-terminal domain (residues 190-243) is partially alpha-helical and undergoes cooperative unfolding (D1/2 = 0.3 M) whereas the isolated mouse C-terminal domain (residues 187-240) is disordered in dilute solution. The human C-terminal domain binds to lipid surfaces much more avidly than the equivalent mouse domain. Human and mouse apoA-I have very different tertiary structure domain contributions for achieving functionality. It is clear that the stability of the N-terminal helix bundle, and the hydrophobicity and alpha-helix content of the C-terminal domain, are critical factors in determining the overall properties of the apoA-I molecule.  相似文献   

8.
We describe a method to measure protein mass transfer kinetics in ion exchange adsorbents for preparative chromatography based on the use of radioactively labeled protein. The method was developed and evaluated using lysozyme as a test protein with the three commercial strong-acid cation exchangers SP-Sepharose-FF, SP-Sepharose-XL, and S-HyperD. Iodination with 125I was used to label the protein, which was added in trace amounts (approximately 0.1%) to an unlabeled protein solution. The solution was recirculated through a shallow bed of the adsorbent particles and the radioactivity accumulated in the bed measured with a gamma-counter as a function of time. Radiotracer-based kinetics measurements were found to be in good agreement with results obtained with a conventional shallow-bed technique, provided that freshly labeled protein solutions were used. The method has advantages in terms of simplicity, ability to deal with adsorption from complex mixtures, and the potential for measurements under tracer diffusion conditions. Kinetics results obtained for the three different stationary phases were generally consistent with previous studies. Protein mass transfer can be described by a pore diffusion model with a nearly salt-independent pore diffusivity for SP-Sepharose-FF and by a homogeneous diffusion model with a saltindependent adsorbed phase diffusivity for S-HyperD. However, it appears that a more complex model, accounting for parallel pore and surface diffusion, is needed to describe protein mass transfer in SP-Sepharose-XL. The modeling results were found to be correlated with the apparent pore sizes determined by inverse SEC.  相似文献   

9.
The [2Fe–2S] ferredoxin from the extreme haloarchaeon Halobacterium salinarum is stable in high (>1.5 M) salt concentration. At low salt concentration the protein exhibits partial unfolding. The kinetics of unfolding was studied in low salt and in presence of urea in order to investigate the role of salt ions on the stability of the protein. The urea dependent unfolding, monitored by fluorescence of the tryptophan residues and circular dichroism, suggests that the native protein is stable at neutral pH, is destabilized in both acidic and alkaline environment, and involves the formation of kinetic intermediate(s). In contrast, the unfolding kinetics in low salt exhibits enhanced rate of unfolding with increase in pH value and is a two state process without the formation of intermediate. The unfolding at neutral pH is salt concentration dependent and occurs in two stages. The first stage, involves an initial fast phase (indicative of the formation of a hydrophobic collapsed state) followed by a relatively slow phase, and is dependent on the type of cation and anion. The second stage is considerably slower, proceeds with an increase in fluorescence intensity and is largely independent of the nature of salt. Our results thus show that the native form of the haloarchaeal ferredoxin (in high salt concentration) unfolds in low salt concentration through an apparently hydrophobic collapsed form, which leads to a kinetic intermediate. This intermediate then unfolds further to the low salt form of the protein.  相似文献   

10.
Aggregation and subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. Many proteins unrelated to amyloidoses also fibrillate at the appropriate conditions. These proteins serve as a model for studying the processes of protein misfolding, oligomerization and fibril formation. The accumulated data support the model where protein fibrillogenesis proceeds via the formation of a relatively unfolded amyloidogenic conformation. The urea-induced unfolding of bovine carbonic anhydrase II, BCA II, is characterized by a combination of high-resolution NMR, circular dichroism spectroscopy and small angle X-ray scattering. It is shown that the formation of associates of protein molecules in complex with solvent (water and urea), APS, takes place in the presence of 4-6 M urea. The subsequent increase in urea concentration to 8 M is accompanied by a disruption of APS and leads to a complete unfolding of a protein molecule. Analysis of BCA II self-association in the presence of 4.2 M urea revealed that APS are relatively large mostly beta-structural blocks with the averaged molecular mass of 190-220 kDa. This work also demonstrates some novel NMR-based methodological approaches that provide useful information on protein self-association.  相似文献   

11.
Hydrophobic interaction chromatography media suited for large scale separations were compared regarding dynamic binding capacity, recovery and mass transfer properties. In all cases, pore diffusion was the rate limiting step. Reduced heights equivalent to a theoretical plate for bovine serum albumin derived from breakthrough curves at reduced velocities between 60 and 1500 ranged from 10 to 700. Pore diffusion coefficients were derived from pulse response experiments for the model proteins alpha-lactalbumin, lysozyme, beta-lactoglobulin, bovine serum albumin and immunoglobulin G. Diffusivity of lysozyme did not follow the trend of decreasing diffusivity with increasing molecular mass, as observed for the rest of the proteins. In general, mass transfer coefficients were smaller compared to ion-exchange chromatography. Dynamic binding capacities for the model protein bovine serum albumin varied within a broad range. However, sorbents based on polymethacrylate showed a lower dynamic capacity than media based on Sepharose. Some sorbents could be clustered regarding binding capacity affected by salt. These sorbents exhibited a disproportional increase of binding capacity with increasing ammonium sulfate concentration. Recovery of proteins above 75% could be observed for all sorbents. Several sorbents showed a recovery close to 100%.  相似文献   

12.
The sequential arrangement of histones along DNA in nucleosome core particles was determined between 0.5 and 600 mM salt and from 0 to 8 M urea. These concentrations of salt and urea up to 6 M had no significant effect on the linear order of histones along DNA but 8 M urea caused the rearrangement of histones. Conformational changes in cores have been identified within these ranges of conditions by several laboratories 8-21. Also, abrupt structural changes in the cores, apparently their unfolding, were found by gel electrophoresis to occur at urea concentration, between 4 and 5 M. 600 mM salt and 6 M urea were shown to relax the binding of histones to DNA in cores but do not however release histones or some part of their molecules from DNA. It appears therefore that nucleosomal cores can undergo some conformational transitions and unfolding whereas their primary organization remains essentially unaffected. These results are consistent with a model of the core particles in which the histone octamer forms something like a helical "rim" along the superhelical DNA and histone-histone interactions beyond the "rim" are rather weak in comparison with those within the "rim".  相似文献   

13.
The kinetics and thermodynamics of the urea-induced unfolding of flavodoxin and apoflavodoxin from Desulfovibrio vulgaris were investigated by measuring changes in flavin and protein fluorescence. The reaction of urea with flavodoxin is up to 5000 times slower than the reaction with the apoprotein (0.67 s(-1) in 3 m urea in 25 mm sodium phosphate at 25 degrees C), and it results in the dissociation of FMN. The rate of unfolding of apoflavodoxin depends on the urea concentration, while the reaction with the holoprotein is independent of urea. The rates decrease in high salt with the greater effect occurring with apoprotein. The fluorescence changes fit two-state models for unfolding, but they do not exclude the possibility of intermediates. Calculation suggests that 21% and 30% of the amino-acid side chains become exposed to solvent during unfolding of flavodoxin and apoflavodoxin, respectively. The equilibrium unfolding curves move to greater concentrations of urea with increase of ionic strength. This effect is larger with phosphate than with chloride, and with apoflavodoxin than with flavodoxin. In low salt the conformational stability of the holoprotein is greater than that of apoflavodoxin, but in high salt the relative stabilities are reversed. It is calculated that two ions are released during unfolding of the apoprotein. It is concluded that the urea-dependent unfolding of flavodoxin from D. vulgaris occurs because apoprotein in equilibrium with FMN and holoprotein unfolds and shifts the equilibrium so that flavodoxin dissociates. Small changes in flavin fluorescence occur at low concentrations of urea and these may reflect binding of urea to the holoprotein.  相似文献   

14.
Parkinson EJ  Morris MB  Bastiras S 《Biochemistry》2000,39(40):12345-12354
We have investigated the conformational changes incurred during the acid-induced unfolding and self-association of recombinant porcine growth hormone (pGH). Acidification (pH 8 to pH 2) of pGH resulted in intrinsic fluorescence, UV absorbance, and near-UV CD transitions centered at pH 4.10. At pH 2.0, a red shift in the fluorescence emission maximum of approximately 3 nm and a 15% loss of the far-UV CD signal at 222 nm imply that the protein did not become extensively unfolded. Acidification in the presence of 4 M urea resulted in similar pH-dependent transitions. However, these occurred at a higher pH (approximately 5.2). At pH 2.0 + 4 M urea, an 8 nm red shift in the fluorescence emission maximum suggests that unfolding was greater than in the absence of urea. The presence of a prominent peak centered at 298 nm in the near-UV CD spectrum, which is absent without urea, signifies further differences in the intermediates generated at pH 2. Sedimentation equilibrium experiments in the analytical ultracentrifuge showed that native pGH and the partially unfolded intermediates reversibly self-associate. Self-association was strongly promoted at pH 2 while urea reduced self-association at both pH 8 and pH 2. These results demonstrate that acidification of pGH in the absence or presence of 4 M urea induced the formation of molten globule-like states with measurable differences in conformation. Similarities and differences in these structural conformations with respect to other growth hormones are discussed.  相似文献   

15.
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids.  相似文献   

16.
732树脂吸附蛋白质的机理研究   总被引:2,自引:0,他引:2  
通过树脂吸附水溶液中蛋白质的试验 ,研究了 732树脂对蛋白质吸附过程机理 ,初步分析了动力学行为 ,包括吸附等温线方程、吸附速率方程、总传质系数、树脂内的有效扩散系数等  相似文献   

17.
Karmodiya K  Surolia N 《Proteins》2008,70(2):528-538
The urea and guanidinium chloride (GdmCl) induced unfolding of FabG, a beta-ketoacyl-ACP reductase of Plasmodium falciparum, was examined in detail using intrinsic fluorescence of FabG, UV-circular dichroism (CD), spectrophotometric enzyme activity measurements, glutaraldehyde cross-linking, and size exclusion chromatography. The equilibrium unfolding of FabG by urea is a multistep process as compared with a two-state process by GdmCl. FabG is fully unfolded at 6.0M urea and 4.0M GdmCl. Approximately 90% of the enzyme activity could be recovered on dialyzing the denaturants, showing that denaturation by both urea and GdmCl is reversible. We found two states in the reversible unfolding process of FabG in presence of NADPH; one is an activity-enhanced state and the other, an inactive state in case of equilibrium unfolding with urea. On the contrary, in presence of NADPH, there is no stabilization of FabG in case of equilibrium unfolding with GdmCl. We hypothesize that the hydrogen-bonding network may be reorganized by the denaturant in the activity-enhanced state formed in presence of 1.0M urea, by interrupting the association between dimer-dimer interface and help in accommodating the larger substrate in the substrate binding tunnel thus, increasing the activity. Furthermore, binding of the active site organizer, NADPH leads to compaction of the FabG in presence of urea, as evident by acrylamide quenching. We have shown here for the first time, the detailed inactivation kinetics of FabG, which have not been evaluated in the past from any of the FabG family of enzymes from any of the other sources. These findings provide impetus for exploring the influences of ligands on the structure-activity relationship of Plasmodium beta-ketoacyl-ACP reductase.  相似文献   

18.
The unfolding of chromatin by urea (0-7 M) was studied by means of flow linear dichroism, photoaffinity labeling and nuclease digestion. The linear dichroism results indicate that the unfolding of the DNA is accomplished through two distinct transitions at 1-2 M urea and 6-8 M urea, respectively. The photoaffinity labeling studies indicate that an opening of the nucleosome histone core occurs above 2 M urea, accompanied by general loosening of the structure. Based on the results a model for the unfolding of chromatin fibers by urea is proposed, which includes a stretching of the linker DNA (0-2 M urea) followed by a "loosening" of the nucleosome core, possibly to a one-loop DNA conformation (2-6 M urea), and finally resulting in an almost total stretching of the DNA (greater than 6 M urea).  相似文献   

19.
The stability of association of nitroimidazole radiosensitizers (metronidazole and misonidazole) with bovine serum albumin (BSA) was examined in aqueous solutions by 1H n.m.r. spectroscopy in the presence of urea (0-8M) as denaturant, or high salt concentration (NaCl0-5M). A broadening of n.m.r. lines of the two radiosensitizers observed in the presence of BSA disappeared with increasing urea concentration. An especially large narrowing effect was observed for the lines attributed to the methylene group near to the hydroxyl in the side chain of misonidazole. The results suggest a release of both radiosensitizers from their binding sites on unfolding by urea of the polypeptide chain of BSA. The increase of ionic strength I caused a monotonic enhancement of broadening by BSA of the metronidazole lines. For misonidazole, the enhancement of broadening was observed at values of I greater than 1, but at low (less than 1 M) concentrations of NaCl the broadening disappeared. Thus, the results obtained in the systems with salt reflect quantitative changes in hydrophobic and hydrogen-bonded contributions to binding of aliphatic moieties of radiosensitizers to BSA.  相似文献   

20.
Protein self-association and protein unfolding are two temperature-dependent processes whose understanding is of utmost importance for the development of biological pharmaceuticals because protein association may stabilize or destabilize protein structure and function. Here we present new theoretical and experimental methods for analyzing the thermodynamics of self-association and unfolding. We used isothermal dilution calorimetry and analytical ultracentrifugation to measure protein self-association and introduced binding partition functions to analyze the cooperative association equilibria. In a second type of experiment, we monitored thermal protein unfolding with differential scanning calorimetry and circular dichroism spectroscopy and used the Zimm?Bragg theory to analyze the unfolding process. For α-helical proteins, the cooperative Zimm?Bragg theory appears to be a powerful alternative to the classical two-state model. As a model protein, we chose highly purified human recombinant apolipoprotein A-I. Self-association of Apo A-I showed a maximum at 21 °C with an association constant Ka of 5.6 × 10(5) M(?1), a cooperativity parameter σ of 0.003, and a maximal association number n of 8. The association enthalpy was linearly dependent on temperature and changed from endothermic at low temperatures to exothermic above 21 °C with a molar heat capacity ΔC(p)° of ?2.76 kJ mol(?1) K(?1). Above 45 °C, the association could no longer be measured because of the onset of unfolding. Unfolding occurred between 45 and 65 °C and was reversible and independent of protein concentration up to 160 μM. The midpoint of unfolding (T(0)) as measured by DSC was 52?53 °C; the enthalpy of unfolding (ΔH(N)(U)) was 420 kJ/mol. The molar heat capacity (Δ(N)(U)C(p)) increased by 5.0 ± 0.5 kJ mol(?1) K(?1) upon unfolding corresponding to a loss of 80?85 helical segments, which was confirmed by circular dichroism spectroscopy. Unfolding was highly cooperative with a nucleation parameter σ of 4.4 × 10(?5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号