首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Antiobesity effects of green tea catechins: a mechanistic review   总被引:2,自引:0,他引:2  
Green tea catechins (GTC) are polyphenolic compounds present in the unfermented dried leaves of the plant, Camellia sinensis. Results from a number of randomized, controlled intervention trials have shown that consumption of GTC (270 mg to 1200 mg/day) may reduce body weight and fat. There are several proposed mechanisms whereby GTC may influence body weight and composition. The predominating hypothesis is that GTC influences sympathetic nervous system (SNS) activity, increasing energy expenditure and promoting the oxidation of fat. Caffeine, naturally present in green tea, also influences SNS activity, and may act synergistically with GTC to increase energy expenditure and fat oxidation. Other potential mechanisms include modifications in appetite, up-regulation of enzymes involved in hepatic fat oxidation, and decreased nutrient absorption. This article reviews the evidence for each of these purported mechanisms, with particular reference to studies in humans.  相似文献   

2.
Lewis KC  Selzer T  Shahar C  Udi Y  Tworowski D  Sagi I 《Phytochemistry》2008,69(14):2586-2592
Pectin methyl esterases (PMEs) and their endogenous inhibitors are involved in the regulation of many processes in plant physiology, ranging from tissue growth and fruit ripening to parasitic plant haustorial formation and host invasion. Thus, control of PME activity is critical for enhancing our understanding of plant physiological processes and regulation. Here, we report on the identification of epigallocatechin gallate (EGCG), a green tea component, as a natural inhibitor for pectin methyl esterases. In a gel assay for PME activity, EGCG blocked esterase activity of pure PME as well as PME extracts from citrus and from parasitic plants. Fluorometric tests were used to determine the IC50 for a synthetic substrate. Molecular docking analysis of PME and EGCG suggests close interaction of EGCG with the catalytic cleft of PME. Inhibition of PME by the green tea compound, EGCG, provides the means to study the diverse roles of PMEs in cell wall metabolism and plant development. In addition, this study introduces the use of EGCG as natural product to be used in the food industry and agriculture.  相似文献   

3.
Antimalarial properties of green tea   总被引:1,自引:0,他引:1  
We show here that a crude extract of green tea as well as two of its main constituents, epigallocatechin-3-gallate (EGCG) and epicatechin gallate (ECG), strongly inhibit Plasmodium falciparum growth in vitro. Both these catechins are found to potentiate the antimalarial effects of artemisinin without interfering with the folate pathway. The importance of these findings and their mechanistic implications are discussed in view of future therapeutic strategies.  相似文献   

4.
Green tea (Camellia sinensis) is rich in catechins, of which (−)-epigallocatechin-3-gallate (EGCG) is the most abundant. Studies in animal models of carcinogenesis have shown that green tea and EGCG can inhibit tumorigenesis during the initiation, promotion and progression stages. Many potential mechanisms have been proposed including both antioxidant and pro-oxidant effects, but questions remain regarding the relevance of these mechanisms to cancer prevention. In the present review, we will discuss the redox chemistry of the tea catechins and the current literature on the antioxidant and pro-oxidative effects of the green tea polyphenols as they relate to cancer prevention. We report that although the catechins are chemical antioxidants which can quench free radical species and chelate transition metals, there is evidence that some of the effects of these compounds may be related to induction of oxidative stress. Such pro-oxidant effects appear to be responsible for the induction of apoptosis in tumor cells. These pro-oxidant effects may also induce endogenous antioxidant systems in normal tissues that offer protection against carcinogenic insult. This review is meant point out understudied areas and stimulate research on the topic with the hope that insights into the mechanisms of cancer preventive activity of tea polyphenols will result.  相似文献   

5.
Dai F  Chen WF  Zhou B 《Biochimie》2008,90(10):1499-1505
The synergistic antioxidant effect of polyphenols extracted from green tea, i.e. (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG) and gallic acid (GA), with alpha-tocopherol (vitamin E) and l-ascorbic acid (vitamin C) against the peroxidation of linoleic acid has been studied in sodium dodecyl sulfate (SDS) micelles. The peroxidation was initiated thermally by a water-soluble azo initiator 2,2'-azobis(2-amidinopropane) hydrochloride (AAPH), and the reaction kinetics were studied by monitoring the formation of linoleic acid hydroperoxides and consumption of the antioxidants. It was found that the mixture of the green tea polyphenol, vitamin E and vitamin C could act synergistically to protect lipid peroxidation. Kinetic and mechanistic studies on the antioxidation process revealed that this antioxidant synergism was due to the regeneration of vitamin E by the green tea polyphenol and the regeneration of the latter by vitamin C.  相似文献   

6.
Catechins have a broad range of physiological functions and act as the main taste ingredient of green tea. Although catechins show a strong bitterness, the bitter taste receptor for catechins has not been fully understood. The objective of this study was to identify the receptor for the major green tea catechins such as (−)-epicatechin (EC), (−)-epicatechin gallate (ECg), (−)-epigallocatechin (EGC), and (−)-epigallocatechin gallate (EGCg). By the cell-based assay using cultured cells expressing human bitter taste receptor, a clear response of hTAS2R39-expressing cells was observed to 300 μM of either ECg or EGCg, which elicit a strong bitterness in humans. The response of hTAS2R39-expressing cells to ECg was the strongest among the tested catechins, followed by EGCg. Because the cellular response to EC and EGC is much weaker than those of ECg and EGCg, galloyl groups was strongly supposed to be involved in the bitter intensity. This finding is similar to the observations of taste intensity obtained from a human sensory study. Our results suggest the participation of hTAS2R39 in the detection of catechins in humans, indicating the possibility that bitterness of tea catechins can be evaluated by using cells expressing hTAS2R39.  相似文献   

7.
Since urease of Helicobacter pylori is essential for its colonization, we focused attention on foodstuffs which inhibit the activity of this enzyme. Among plant-derived 77 foodstuff samples tested, some tea and rosemary extracts were found to clearly inhibit H. pylori urease in vitro. In particular, green tea extract (GTE) showed the strongest inhibition of H. pylori urease, with an IC(50) value of 13 microg/ml. Active principles were identified to be catechins, the hydroxyl group of 5(')-position appearing important for urease inhibition. Furthermore, when H. pylori-inoculated Mongolian gerbils were given GTE in drinking water at the concentrations of 500, 1000, and 2000 ppm for 6 weeks, gastritis and the prevalence of H. pylori-infected animals were suppressed in a dose-dependent manner. Since the acquisition by H. pylori of resistance to antibiotics has become a serious problem, tea and tea catechins may be very safe resources to control H. pylori-associated gastroduodenal diseases.  相似文献   

8.
Green tea extracts have been suggested to possess a preventive effect against dental caries. A quantitative method for their anticariogenic substances, catechins, was developed to evaluate their concentrations in human saliva after mouthrinsing with green tea extract. Salivary catechins were extracted to the organic phase after forming a complex with diphenylborate and an ion-pair with tetra-n-butylammonium, and then back-extracted to the acidic aqueous phase. The extract was analyzed by high-performance liquid chromatography using diode array detection at absorption wavelengths ranging from 269 to 278 nm. In reversed-phase chromatography by a gradient elution, eight catechins originating from green tea and an internal standard were separated in 15 min without interfering peaks. All the catechins were simultaneously and selectively determined in the concentration range 0.05–25.0 μg/ml. In replicate spiking experiments with standards, the mean recovery ranged between 86 and 99%, and both intra- and inter-assay C.V.s were within 2.3%. When mouthrinsing with an aqueous solution of green tea extract (5.0 mg/ml) containing eight catechins, the quantitative results revealed that each catechin was retained at μg/ml levels in saliva for up to 60 min.  相似文献   

9.
We demonstrate that the tea polyphenol, epigallocatechin-3-gallate, is an efficient inhibitor of human dihydrofolate reductase. Like other antifolate compounds, epigallocatechin-3-gallate acts by disturbing folic acid metabolism in cells, causing the inhibition of DNA and RNA synthesis and altering DNA methylation. Epigallocatechin-3-gallate was seen to inhibit the growth of a human colon carcinoma cell line in a concentration and time dependent manner. Rescue experiments using leucovorin and hypoxanthine–thymine medium were the first indication that epigallocatechin-3-gallate could disturb the folate metabolism within cells. Epigallocatechin-3-gallate increased the uptake of [3H]-thymidine and showed synergy with 5-fluorouracil, while its inhibitory action was strengthened after treatment with hypoxanthine, which indicates that epigallocatechin-3-gallate decreases the cellular production of nucleotides, thus, disturbing DNA and RNA synthesis. In addition to its effects on nucleotide biosynthesis, antifolate treatment has been linked to a decrease in cellular methylation. Here, we observed that epigallocatechin-3-gallate altered the p16 methylation pattern from methylated to unmethylated as a result of folic acid deprivation. Finally, we demonstrate that epigallocatechin-3-gallate causes adenosine to be released from the cells because it disrupts the purine metabolism. By binding to its specific receptors, adenosine can modulate different signalling pathways. This proposed mechanism should help us to understand most of the molecular and cellular effects described for this tea polyphenol.  相似文献   

10.
Native polyacrylamide gel electrophoresis showed carboxylesterase (CES) to be the most abundant hydrolase in the liver and small intestine of humans, monkeys, dogs, rabbits and rats. The liver contains both CES1 and CES2 enzymes in all these species. The small intestine contains only enzymes from the CES2 family in humans and rats, while in rabbits and monkeys, enzymes from both CES1 and CES2 families are present. Interestingly, no hydrolase activity at all was found in dog small intestine. Flurbiprofen derivatives were R-preferentially hydrolyzed in the liver microsomes of all species, but hardly hydrolyzed in the small intestine microsomes of any species except rabbit. Propranolol derivatives were hydrolyzed in the small intestine and liver microsomes of all species except dog small intestine. Monkeys and rabbits showed R-preferential and non-enantio-selective hydrolysis, respectively, for propranolol derivatives in both organs. Human and rat liver showed R- and S-preferential hydrolysis, respectively, in spite of non-enantio-selective hydrolysis in their small intestines. The proximal-to-distal gradient of CES activity in human small intestine (1.1-1.5) was less steep than that of CYP 3A4 and 2C9 activity (three-fold difference). These findings indicate that human small intestine and liver show extensive hydrolase activity attributed to CES, which is different from that in species commonly used as experimental animals.  相似文献   

11.
Summary The present study was arranged to test the reaction of the intestinal cell barrier toward the presence of chromogenic, acid-fast bacteria. The bacilli were introduced into the alimentary tract through a modified stomach tube. It was found that these bacterial forms were transported by macrophages through the columnar epithelium, within one to two hours following the test feeding. No other cellular elements such as neutrophils or columnar epithelial cells were observed in association with this process.Supported by a grant from the Nebraska Heart Association. Department of Zoology, University of Nebraska, Contribution No. 418.  相似文献   

12.
A 2-mo experiment with the white Sprague-Dawley (SD) rats was conducted to investigate the effect of the water extracts of black tea (BTWE) and green tea (GTWE) and the black tea leaves (BTF) and the green tea leaves (GTF) on the metabolism of mineral elements. One hundred eight 12-mo-old white SD rats were randomly divided into 13 groups; 6 of these drank the BTWE or GTWE in which the water extracts concentrations of black tea or green tea were, respectively, 0.6%, 1.2%, and 2.4%, and 6 of these had black tea leaves (BTF) and green tea leaves (GTF) added in which the contents of BTF or GTF were, respectively, 0.5%, 1.0%, and 2.0%, one of these was control. The teas and their water extracts could promote the absorption of manganese and copper. In GTF, BTF, GTWE, and BTWE, the apparent absorption rates of manganese were significantly increased. The manganese contents in the tibia were also elevated, and the differences between GTWE and GTF were significant. The apparent absorption rates of copper and the copper contents in the tibia were increased, but not significantly. The teas and their water extracts inhibited the absorption of calcium (p > 0.05) and iron (p < 0.05). The cerebrum calcium contents were significantly decreased, but the contents of calcium and iron in tibia were not significantly changed. Compared with the control, although the apparent absorption rates of aluminum in all experimental groups were not observed to be different, the aluminum contents in the tibia (p > 0.05) and cerebrum (p < 0.05) were increased. GTF and GTWE decreased the apparent absorption rates of zinc, but BTF and BTWE increased them; the zinc contents in tibia were a little improved, whereas its contents in the cerebrum were gradually decreased with the increase of tea leaves dose and tea concentration.  相似文献   

13.
Summary In the external layers of human small and large intestine macrophage-like cells were characterized by immunohistochemical, histochemical and electronmicroscopical methods. Using immunohistochemistry and a number of monoclonal antibodies, the presence and distribution of phenotypic subpopulations of macrophages were evaluated. In all locations macrophage-like cells were identified with antibody EBM11, which recognizes CD68 antigen, C3bi which recognizes CD11b, and partly with an antibody which recognizes protein 150,95 (CD11c). Macrophage-like cells in the external muscle layer were HLA-DR-positive (expressing the MHC class-II antigen), in contrast to macrophage-like cells in the subserosa and submucosa. Macrophage-like cells in the external muscle layer were mostly acid phosphatase-negative, and at the electron-microscopic level they were found to have features of macrophages: primary lysosomes, coated vesicles and pits. However, very few secondary lysosomes were present. Birbeck granules were not observed. It is concluded that in the external muscle layer of human small and large intestine numerous macrophages of a special type are present. It is discussed whether this cell type plays a role in gastrointestinal motility and/or has an immunological function.  相似文献   

14.
Intestinal metabolism of the subtoxic level of selenite in rats was investigated using a double-perfusion system, which is an in situ, in vitro preparation in which the intestinal lumen and its vasculature are perfused simultaneously. The toxicity of sodium selenite was determined by inhibition of 3-O-methyl glucose (3MG) absorption and by histological examination. Levels of 1.2 mM selenite were required to significantly (p<0.05) reduce 3MG intestinal absorption (58±11%, mean±SD). Cation-exchange chromatography was used to determine the chemical forms of Se from selenite after using luminal concentrations of 1–200 μM in vascular perfusates. The chemical forms were selenite, selenodiglutathione (GS-Se-SG), mixed selenoglutathione plus cysteine (GS-Se-CYS), selenodicysteine (CYS-Se-CYS), protein-bound Se, and unidentified selenocompounds. Selenite was the predominant selenocompound found in vascular perfusate, but protein-bound Se was the predominant metabolite from selenite present in the vascular effuents. There was a corresponding increase of all metabolites with increased levels of selenite with time of absorption, but not with increased concentration of luminal selenite.  相似文献   

15.
Immunofluorescent localization of transglutaminase in rat small intestine   总被引:1,自引:0,他引:1  
The distribution of intestinal transglutaminase was investigated by immunofluorescence microscopy using rabbit anti-guinea pig transglutaminase immunoglobulin. Transglutaminase-related antigen was demonstrated principally in the cytoplasm of villous core interstitial cells with some activity in the brush border region of the villous epithelial cells. Implications for the pathogenesis of coeliac disease are discussed.  相似文献   

16.
The flavonoids (-)-epigallocatechin-3-gallate (EGCg) and (-)-epicatechin-3-gallate (ECg) are major components of green tea and show numerous biological effects. We investigated the glucuronidation of these compounds and of quercetin by microsomes. Quercetin was almost fully glucuronidated by liver microsomes after 3 h, whereas ECg and ECGg were conjugated to a lesser extent ([Formula: See Text] and [Formula: See Text] respectively). The intestinal microsomes also glucuronidated quercetin much more efficiently than ECg and EGCg. Although the rates were lower than quercetin, intestinal microsomes exhibited higher activity on the galloyl group of ECg and EGCg compared to the flavonoid ring, whereas hepatic glucuronidation was higher on the flavonoid ring of EGCg and ECg compared to the galloyl groups. The low glucuronidation rates could partially explain why these flavanols are present in plasma as unconjugated forms.  相似文献   

17.
Lill G  Voit S  Schrör K  Weber AA 《FEBS letters》2003,546(2-3):265-270
Epigallocatechin gallate (EGCG), a major component of green tea, has been previously shown to inhibit platelet aggregation. The effects of other green tea catechins on platelet function are not known. Pre-incubation with EGCG concentration-dependently inhibited thrombin-induced aggregation and phosphorylation of p38 mitogen-activated protein kinase and extracellular signal-regulated kinases-1/2. In contrast EGCG stimulated tyrosine phosphorylation of platelet proteins, including Syk and SLP-76 but inhibited phosphorylation of focal adhesion kinase. Other catechins did not inhibit platelet aggregation. Interestingly, when EGCG was added to stirred platelets, a tyrosine kinase-dependent stimulation of platelet aggregation was observed. The two other catechins containing a galloyl group in the 3' position (catechin gallate, epicatechin gallate) also stimulated platelet aggregation, while catechins without a galloyl group (catechin, epicatechin) or the catechin with a galloyl group in the 2' position (epigallocatechin) did not.  相似文献   

18.
Summary Localization of vitamin A in the small intestine of mice was studied with electron microscope radioautography after administration of tritiated vitamin A. The label was concentrated over lipid droplets in cells distributed in the lamina propria and the submucous layer. The cells were similar both to fibroblasts and to fat-storing cells in their morphological features. The name Vitamin A-Storing Cell is proposed for these labeled cells, including the fat-storing cell in the liver.  相似文献   

19.
Okada S  Misaka T  Matsumoto I  Watanabe H  Abe K 《FEBS letters》2003,540(1-3):157-162
We analyzed the expression of aquaporins (AQPs) in the small intestine to elucidate their functions, and found that AQP9, which had not previously been detected there, is present in duodenum, jejunum, and ileum. AQP9 is expressed in colon as well, but not in stomach. Also, its expression in these intestinal sections is limited to the basolateral membranes of a goblet cell subset. Our finding that AQP9 is present specifically in goblet cells as mucus-secreting cells suggests its involvement in the synthesis and/or secretion of a certain kind of mucus which may protect the intestinal surface and smooth the flow of intestinal contents.  相似文献   

20.
Modelling slow wave activity in the small intestine   总被引:3,自引:0,他引:3  
We have developed an anatomically based model to simulate slow wave activity in the small intestine. Geometric data for the human small intestine were obtained from the Visible Human project. These data were used to create a one-dimensional finite element mesh of the entire small intestine using an iterative fitting procedure. The electrically active components of the intestinal walls were modelled using a modified Fitzhugh-Nagumo cell model embedded within a longitudinal smooth muscle layer and a layer containing Interstitial Cells of Cajal. Within these layers, the monodomain equation was used to describe slow wave propagation. To solve the monodomain equation, a high-resolution finite difference grid, with an average spatial resolution of 0.95 mm, was embedded within each finite element. The resulting simulations of intestinal activity agree with the experimental observation that slow wave frequency gradually declines from 12 cycles per minute (cpm) in the duodenum to 8 cpm at the terminal ileum. Furthermore, the simulations demonstrated a decrease in conduction velocity with distance along the small intestine (10.7 cm/s in the duodenum, 5.1cm/s in the jejunum and 1.4 cm/s in the ileum), matching experimental recordings from the canine small intestine. We conclude that the framework presented here is capable of qualitatively simulating normal slow wave activity in an anatomical model of the small intestine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号