首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The epithelial Na(+) channel (ENaC) is a heteromultimeric ion channel that plays a key role in Na(+) reabsorption across tight epithelia. The canonical ENaC is formed by three analogous subunits, α, β, and γ. A fourth ENaC subunit, named δ, is expressed in the nervous system of primates, where its role is unknown. The human δ-ENaC gene generates at least two splice isoforms, δ(1) and δ(2) , differing in the N-terminal sequence. Neurons in diverse areas of the human and monkey brain differentially express either δ(1) or δ(2) , with few cells coexpressing both isoforms, which suggests that they may play specific physiological roles. Here we show that heterologous expression of δ(1) in Xenopus oocytes and HEK293 cells produces higher current levels than δ(2) . Patch-clamp experiments showed no differences in single channel current magnitude and open probability between isoforms. Steady-state plasma membrane abundance accounts for the dissimilarity in macroscopic current levels. Differential trafficking between isoforms is independent of β- and γ-subunits, PY-motif-mediated endocytosis, or the presence of additional lysine residues in δ(2)-N terminus. Analysis of δ(2)-N terminus identified two sequences that independently reduce channel abundance in the plasma membrane. The δ(1) higher abundance is consistent with an increased insertion rate into the membrane, since endocytosis rates of both isoforms are indistinguishable. Finally, we conclude that δ-ENaC undergoes dynamin-independent endocytosis as opposed to αβγ-channels.  相似文献   

2.
We describe the activation of a K+ current and inhibition of a Cl current by a cyanoguanidine activator of ATP-sensitive K+ channels (KATP) in the smooth muscle cell line A10. The efficacy of U83757, an analogue of pinacidil, as an activator of KATP was confirmed in single channel experiments on isolated ventricular myocytes. The effects of U83757 were examined in the clonal smooth muscle cell line A10 using voltage-sensitive dyes and digital fluorescent imaging techniques. Exposure of A10 cells to U83757 (10 nm to 1 m) produced a rapid membrane hyperpolarization as monitored by the membrane potential-sensitive dye bis-oxonol ([diBAC4(3)], 5 m). The U83757induced hyperpolarization was antagonized by glyburide and tetrapropylammonium (TPrA) but not by tetraethlylammonium (TEA) or charybdotoxin (ChTX). The molecular basis of the observed hyperpolarization was studied in whole-cell, voltage-clamp experiments. Exposure of voltage-clamped cells to U83757 (300 nm to 300 m) produced a hyperpolarizing shift in the zero current potential; however, the hyperpolarizing shift in reversal potential was associated with either an increase or decrease in membrane conductance. In solutions where E k=–82 mV and E Cl=0 mV, the reversal potential of the U83757-sensitive current was approximately –70 mV in those experiments where an increase in membrane conductance was observed. In experiments in which a decrease in conductance was observed, the reversal potential of the U83757-sensitive current was approximately 0 mV, suggesting that U83757 might be acting as a Cl channel blocker as well as a K+ channel opener. In experiments in which Cl current activation was specifically brought about by cellular swelling and performed in solutions where Cl was the major permeant ion, U83757 (300 nm to 300 m) produced a dose-dependent current inhibition. Taken together these results (i) demonstrate the presence of a K+-selective current which is sensitive to KATP channel openers in A10 cells and (ii) indicate that the hyperpolarizing effects of K+ channel openers in vascular smooth muscle may be due to both the inhibition of Cl currents as well as the activation of a K+-selective current.This work was supported in part by the following grants: PHS P01 DK44840 and GM36823 (D.J.N.). J.C.M. is an Established Investigator of the American Heart Association.  相似文献   

3.
Tao J  Shi J  Yan L  Chen Y  Duan YH  Ye P  Feng Q  Zhang JW  Shu XQ  Ji YH 《PloS one》2011,6(3):e15896

Background

BK channels are usually activated by membrane depolarization and cytoplasmic Ca2+. Especially,the activity of BK channel (α+β4) can be modulated by martentoxin, a 37 residues peptide, with Ca2+-dependent manner. gBK channel (glioma BK channel) and BK channel (α+β1) possessed higher Ca2+ sensitivity than other known BK channel subtypes.

Methodology and Principal Findings

The present study investigated the modulatory characteristics of martentoxin on these two BK channel subtypes by electrophysiological recordings, cell proliferation and Ca2+ imaging. In the presence of cytoplasmic Ca2+, martentoxin could enhance the activities of both gBK and BK channel (α+β1) subtypes in dose-dependent manner with EC50 of 46.7 nM and 495 nM respectively, while not shift the steady-state activation of these channels. The enhancement ratio of martentoxin on gBK and BK channel (α+β1) was unrelated to the quantitive change of cytoplasmic Ca2+ concentrations though the interaction between martentoxin and BK channel (α+β1) was accelerated under higher cytoplasmic Ca2+. The selective BK pore blocker iberiotoxin could fully abolish the enhancement of these two BK subtypes induced by martentoxin, suggesting that the auxiliary β subunit might contribute to the docking for martentoxin. However, in the absence of cytoplasmic Ca2+, the activity of gBK channel would be surprisingly inhibited by martentoxin while BK channel (α+β1) couldn''t be affected by the toxin.

Conclusions and Significance

Thus, the results shown here provide the novel evidence that martentoxin could increase the two Ca2+-hypersensitive BK channel subtypes activities in a new manner and indicate that β subunit of these BK channels plays a vital role in this enhancement by martentoxin.  相似文献   

4.
It is widely known that a rise in internal Ca2+ leads to an increased K+ permeability of human red blood cells [1,2,3]. Binding of Ca2+ to some membrane receptors is required for the opening of the K+ channel [4]. This requirement, however, seems to alter after "ageing" red cells in vitro in acid-citrate-dextrose solutions. Thus, the free Ca2+ concentration producing half-maximal effect on K+ permeability ([Ca2+]K+-50) of 4-weeks stored cells is approx. 2.10(-4) M (calculated from ref. 3 using 50% free Ca2+ according to Schatzmann [5]); nearly ten times lower than that reported for fresh cells [6]. This observation suggests the possibility that the K+ channel may become more sensitive to Ca2+ on cold storage. The experiments described below support this idea.  相似文献   

5.
The apparent permeability of the apical K+ channel in the abdominal skin of the frog (Rana temporaria) for different monovalent cations was tested by comparing the short-circuit current (SCC) obtained after imposition of serosally directed ionic concentration gradients. Furthermore, the SCC was subjected to noise analysis. Of various cations tested, only the "K+-like" ions NH+4, Rb+ and Tl+, besides K+, were found to permeate the apical K+ channel, as reflected by SCC- and fluctuation analysis: (i) The SCC could be depressed by addition of the K+-channel blocker Ba2+ to the mucosal solution. (ii) With the K+-like ions (Ringer's concentration), a spontaneous Lorentzian noise was observed. Plateau values were similar for K+ and Tl+, and smaller for NH+4 and Rb+. The corner frequencies clearly increased in the order K+ less than NH+4 less than Tl+ much less than Rb+. The SCC dose-response relationships revealed a Michaelis-Menten-type current saturation only for pure K+- or Tl+-Ringer's solutions as mucosal medium, whereas a more complicated SCC behavior was seen with Rb+ and especially, NH+4. For K+-Tl+ mixtures an anomalous mole-fraction relationship was observed: At low [Tl+]/[K+] ratios, Tl+ ions appeared to inhibit competitively the K+ current while, at high [Tl+]/[K+] ratios, Tl+ seemed to be a permeant cation. This feature was also detected in the noise analysis of K+-Tl+ mixtures. Long-term exposure to mucosal Tl+ resulted in an irreversible deterioration of the tissue. The SCC depression by Ba2+ was of a simple saturation-type characteristic with, however, different half-maximal doses (NH+4 less than K+ less than Rb+). Ba2+ induced a "blocker noise" in presence of all permeant cations with corner frequencies that depended on the Ba2+ concentration. A linear increase of the corner frequencies of the Ba2+-induced noise with increasing Ba2+ concentration was seen for NH+4, Rb+ and K+. With the assumption of a pseudo two-state model for the Ba2+ blockade the on- and off-rate constants for the Ba2+ interaction with the NH+4/Rb+/K+ channel were calculated and showed marked differences, dependent on the nature of the permeant ion. The specific problems with Tl+ prevented such an analysis but SCC- and noise data indicated a comparably poor efficiency of Ba2+ as Tl+-current inhibitor. We attempted a qualitative analysis of our results in terms of a "two-sites, three-barriers" model of the apical K+ channel in frog skin.  相似文献   

6.
K+ channel proteins native to animal membranes have been shown to be composed of two different types of polypeptides: the pore-forming subunit and the subunit which may be involved in either modulation of conductance through the channel, or stabilization and surface expression of the channel complex. Several cDNAs encoding animal K+ channel subunits have been recently cloned and sequenced. We report the molecular cloning of a rice plant homolog of these animal subunits. The rice cDNA (KOB1) described in this report encodes a 36 kDa polypeptide which shares 45% sequence identity with these animal K+ channel subunits, and 72% identity with the only other cloned plant (Arabidopsis thaliana) K+ channel subunit (KAB1). The KOB1 translation product was demonstrated to form a tight physical association with a plant K+ channel subunit. These results are consistent with the conclusion that the KOB1 cDNA encodes a K+ channel subunit.Expression studies indicated that KOB1 protein is more abundant in leaves than in either reproductive structures or roots. Later-developing leaves on a rice plant were found to contain increasing levels of the protein with the flag leaf having the highest titer of KOB1. Leaf sheaths are known to accumulate excess K+ and act as reserve sources of this cation when new growth requires remobilization of K+. Leaf sheaths were found to contain higher levels of KOB1 protein than the blade portions of leaves. It was further determined that when K+ was lost from older leaves of plants grown on K+-deficient fertilizer, the loss of cellular K+ was associated with a decline in both KOB1 mRNA and protein. This finding represents the first demonstration (in either plants or animals) that changes in cellular K+ status may specifically alter expression of a gene encoding a K+ channel subunit.  相似文献   

7.
8.
Gillespie D  Chen H  Fill M 《Cell calcium》2012,51(6):427-433
The ryanodine receptor (RyR) is a poorly selective channel that mediates Ca(2+) release from intracellular Ca(2+) stores. How RyR's selectivity between the physiological cations K(+), Mg(2+), and Ca(2+) affects single-channel Ca(2+) current amplitude is examined using a recent model of RyR permeation. It is found that K(+) provides the vast majority of the countercurrent (through RyR itself) that is needed to prevent the sarcoplasmic reticulum (SR) membrane potential from changing and stopping Ca(2+) release. Moreover, intra-pore competition between Ca(2+) and Mg(2+) defines single RyR Ca(2+) current amplitude. Since both [Mg(2+)] and [Ca(2+)](SR) can change during pathophysiological conditions, the RyR unitary Ca(2+) current amplitude during Ca(2+) release may change significantly due to this Ca(2+)/Mg(2+) competition. Compared to the classic action of Mg(2+) on RyR open probability, these Ca(2+) current amplitude changes have as large or larger effects on overall RyR Ca(2+) mobilization. A new aspect of RyR divalent versus monovalent selectivity is also identified where this kind of selectivity decreases as divalent concentration increases.  相似文献   

9.
A series of 2-alkyl-3-alkylamino-2H-benzo- and 2-alkyl-3-alkylamino-2H-pyrido[4,3-e]-1,2,4-thiadiazine 1,1-dioxides, structurally related to BPDZ 44 and BPDZ 73, two potent pancreatic B-cells K+ATP channel openers, were synthesized and tested on rat pancreatic islets (endocrine tissue) as well as on rat aorta rings (vascular smooth muscle tissue). Alkylation of the 2-position led to double bond tautomerization and formation of compounds with a 2H-conformation. In contrast to the previously described pyridothiadiazine dioxides, such as BPDZ 44, and 7-chlorobenzothiadiazine dioxides, such as BPDZ 73, the 2-alkyl-substituted analogs were found to be poorly active on the insulin releasing process although most drugs exhibited a vasorelaxant activity. As a result, the new 2-alkyl-substituted pyridinic compounds expressed a selectivity profile (vascular smooth muscle tissue vs pancreatic tissue) opposite to that of their non-alkyl-substituted counterparts, i.e. BPDZ 44. Additional investigations revealed that, in contrast to their non 2-alkyl-substituted analogs, the most interesting 2-methyl-substituted derivatives did not express the pharmacological profile of classical K+ATP channel openers. The pharmacological results rather suggest that alkylation of the 2-position of the thiadiazine ring led to drugs that could act as Ca2+ channel blockers rather than as potassium channel openers.  相似文献   

10.
11.
12.
13.
The epithelial Na(+) channel (ENaC) mediates Na(+) transport across high resistance epithelia. This channel is assembled from three homologous subunits with the majority of the protein's mass found in the extracellular domains. Acid-sensing ion channel 1 (ASIC1) is homologous to ENaC, but a key functional domain is highly divergent. Here we present molecular models of the extracellular region of α ENaC based on a large data set of mutations that attenuate inhibitory peptide binding in combination with comparative modeling based on the resolved structure of ASIC1. The models successfully rationalized the data from the peptide binding screen. We engineered new mutants that had not been tested based on the models and successfully predict sites where mutations affected peptide binding. Thus, we were able to confirm the overall general fold of our structural models. Further analysis suggested that the α subunit-derived inhibitory peptide affects channel gating by constraining motions within two major domains in the extracellular region, the thumb and finger domains.  相似文献   

14.
15.
Jo SH  Hong HK  Chong SH  Choe H 《Life sciences》2008,82(5-6):331-340
Protriptyline, a tricyclic antidepressant for psychiatric disorders, can induce prolonged QT, torsades de pointes, and sudden death. We studied the effects of protriptyline on human ether-à-go-go-related gene (HERG) channels expressed in Xenopus oocytes and HEK293 cells. Protriptyline induced a concentration-dependent decrease in current amplitudes at the end of the voltage steps and HERG tail currents. The IC(50) for protriptyline block of HERG current in Xenopus oocytes progressively decreased relative to the degree of depolarization, from 142.0 microM at -40 mV to 91.7 microM at 0 mV to 52.9 microM at +40 mV. The voltage dependence of the block could be fit with a monoexponential function, and the fractional electrical distance was estimated to be delta=0.93. The IC(50) for the protriptyline-induced blockade of HERG currents in HEK293 cells at 36 degrees C was 1.18 microM at +20 mV. Protriptyline affected channels in the activated and inactivated states, but not in the closed states. HERG blockade by protriptyline was use-dependent, exhibiting a more rapid onset and a greater steady-state block at higher frequencies of activation. Our findings suggest that inhibition of HERG currents may contribute to the arrhythmogenic side effects of protriptyline.  相似文献   

16.
17.
Bone homeostasis is maintained by a dynamic balance between bone resorption by osteoclasts and bone formation by osteoblasts. Since excessive osteoclast activity is implicated in pathological bone resorption, understanding the mechanism underlying osteoclast differentiation, function and survival is of both scientific and clinical importance. Osteoclasts are monocyte/macrophage lineage cells with a short life span that undergo rapid apoptosis, the rate of which critically determines the level of bone resorption in vivo. However, the molecular basis of rapid osteoclast apoptosis remains obscure. Here we report the role of a BH3-only protein, Noxa (encoded by the Pmaip1 gene), in bone homeostasis using Noxa-deficient mice. Among the Bcl-2 family members, Noxa was selectively induced during osteoclastogenesis. Mice lacking Noxa exhibit a severe osteoporotic phenotype due to an increased number of osteoclasts. Noxa deficiency did not have any effect on the number of osteoclast precursor cells or the expression of osteoclast-specific genes, but led to a prolonged survival of osteoclasts. Furthermore, adenovirus-mediated Noxa overexpression remarkably reduced bone loss in a model of inflammation-induced bone destruction. This study reveals Noxa to be a crucial regulator of osteoclast apoptosis, and may provide a molecular basis for a new therapeutic approach to bone diseases.  相似文献   

18.
The Ca2+ channel 1B subunit is a pore-forming component capable of generating N-type Ca2+ channel activity. Although N-type Ca2+ channel plays a role in a variety of neuronal functions, 1B-deficient mice exhibit normal life span without apparent abnormalities of behavior, histology or plasma norepinephrine level, presumably owing to compensation by some other Ca2+ channel 1 or subunit. In this study, we studied the levels of 1A, 1C, 1D, 1E, 1, 2, 3 and 4 mRNAs in adrenal gland of 1B-deficient mice. The 1A mRNA in homozygous mice was expressed at higher level than in wild or heterozygous mice, but no difference in the expression levels of 1C, 1D, 1E, 1, 2, 3 and 4 was found among wild, heterozygous and homozygous mice. The protein level of 1A in homozygous mice was also expressed at higher level than in wild or heterozygous mice. To examine whether increased expression is induced by cis-regulatory element within 5-upstream region of 1A gene, we examined lacZ expression in 1B-deficient × 1A6.3-lacZ mice (carrying a 6.3-kb 5-upstream fragment of 1A gene fused to E. coli lacZ reporter gene), which express lacZ in medullar chromaffin cells, but not in cortex. The levels of lacZ expression in homozygous 1B-deficient × 1A6.3-lacZ mice were higher than in wild or heterozygous mice. Therefore, a possible explanation of the normal behavior and plasma norepinephrine level of 1B-deficient mice is that compensation by 1A subunit occurs and that 6.3-kb 5-upstream region of 1A gene contains enhancer cis-element(s) for compensation in adrenal medulla chromaffin cells. (Mol Cell Biochem 271: 91–99, 2005)  相似文献   

19.
The binding of Ca2+ antagonists to soluble proteins obtained by ammonium sulphate precipitation from cytosol fraction of rabbit skeletal muscles was studied. The KD values for 3H D-888 and 3H PN 200-110 binding to soluble proteins were 21.3 +/- 3.1 nmol.l-1 and 28.8 +/- 8.9 nmol.l-1 respectively. Photoaffinity labelling of the soluble proteins with the arylazide 1,4-dihydropyridine probe 3H azidopine resulted in labelling of the 85-95 K protein band as determined by SDS polyacrylamide gel electrophoresis. Partial purification of prelabelled soluble sample by gel filtration on Sephadex G-150 gave a more precise molecular weight of 90 +/- 2.5K. Polyclonal antibodies prepared against Ca2+ channel complex from rabbit muscle T-tubules inhibited the 3H PN 200-110 binding. Our results suggest that the soluble protein with Mr = 90K +/- 2.5K may be a precursor of the large subunit of the membrane bound L-type Ca2+ channel in rabbit skeletal muscle.  相似文献   

20.
Tension generation and Ca2+ flux in smooth muscle varies depending upon the diameter of a vessel and its location. The purpose of the present investigation was to determine if the biochemical characteristics of the Na+–Ca2+ exchanger and the Ca2+ channel differ in sarcolemmal membrane preparations isolated from a large conduit vessel (thoracic aorta) or from large and small coronary arteries. We also investigated the possibility of differences between sarcolemmal membranes isolated from coronary arteries dissected from the right and left ventricles. The purification of the sarcolemmal membranes was of a similar magnitude amongst the different groups. Contamination of the sarcolemmal membranes with other membranous organelles was negligible and similar amongst the groups. The Km and Vmax of Na+-dependent Ca2+ uptake in sarcolemmal vesicles was similar amongst the groups. Calcium channel characteristics were examined by measuring [3H]PN200-110 binding to sarcolemmal vesicles. The right coronary artery membranes from both large and small caliber vessels exhibited a higher Kd and the small right coronary artery sarcolemmal preparation had a lower maximal binding density for [3H] PN200-110. The results suggest that the right coronary artery, and in particular the small diameter right coronary artery, possesses altered Ca2+ channel characteristics in isolated sarcolemmal membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号