首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Molecular and functional organization of yeast plasmid pSR1   总被引:9,自引:0,他引:9  
The nucleotide sequence of a 6251 base-pair plasmid, pSR1, harbored in an osmophilic haploid yeast, Zygosaccharomyces rouxii (formerly Saccharomyces rouxii), was determined. No homology was detected between the sequences of pSR1 and 2-micron DNA of Saccharomyces cerevisiae. pSR1 has a pair of inverted repeats consisting of completely homologous 959 base-pair sequences, which separate two unique sequences 2654 base-pairs and 1679 base-pairs long. Each inverted repeat has an ARS sequence functional in both Z. rouxii and S. cerevisiae hosts. Short direct repeats or dyad symmetries were observed in the inverted repeats similar to those found close to the replication origin of 2-micron DNA. Three open reading frames, P, S and R, each able to encode a protein of molecular weight larger than 10,000, were found. Insertional inactivation of R gave rise to a defect in the intramolecular recombination at the inverted repeats, and that of S reduced the copy number of pSR1 in the S. cerevisiae host. The maintenance stability of the plasmid was also tested in the heterogeneous S. cerevisiae host, but the results of the insertional inactivation of P, S and R were ambiguous. pSR1 and 2-micron DNA were compatible in S. cerevisiae cells, but the protein factors encoded by these plasmids did not complement each other.  相似文献   

2.
We have developed an effective method to delete or invert a chromosomal segment and to create reciprocal recombination between two nonhomologous chromosomes in Saccharomyces cerevisiae, using the site-specific recombination system of pSR1, a circular cryptic DNA plasmid resembling 2 microns DNA of S. cerevisiae but originating from another yeast, Zygosaccharomyces rouxii. A 2.1-kilobase-pair DNA fragment bearing the specific recombination site on the inverted repeats of pSR1 was inserted at target sites on a single or two different chromosomes of S. cerevisiae by using integrative vectors. The cells were then transformed with a plasmid bearing the R gene of pSR1, which encodes the site-specific recombination enzyme and is placed downstream of the GAL1 promoter. When the transformants were cultivated in galactose medium, the recombination enzyme produced by expression of the R gene created the modified chromosome(s) by recombination between two specific recombination sites inserted on the chromosome(s).  相似文献   

3.
The R gene product (R protein) of Zygosaccharomyces rouxii plasmid pSR1 catalyzes site-specific recombination within a 58 base-pair (bp) sequence present in the 959 bp inverted repeats of this plasmid. The R protein was produced in Escherichia coli and partially purified. The partially purified protein catalyzed site-specific recombination in vitro without the supply of an energy source. Recombination resulted in intramolecular inversion or deletion, depending on whether the orientations of the two recombination sites on the substrate plasmid were the same or opposite. Presumably, R protein is the only protein required for the recombination reaction. A circular DNA molecule appears to be a better substrate than a linear molecule in R-mediated in vitro intramolecular recombination. The R protein binds to a set of six 12 bp elements within the inverted repeats of pSR1. Two of these 12 bp elements are arranged in an inverted configuration with a 7 bp spacer in the 58 bp sequence. The R protein mediates strand cleavage in vitro at the junction between the 12 bp elements and the 7 bp spacer. The cleavage sites on the top and bottom strands are staggered and flanked by polypurine tracts that form part of the 12 bp elements.  相似文献   

4.
A Toh-e  S Tada    Y Oshima 《Journal of bacteriology》1982,151(3):1380-1390
DNA plasmids were detected in two independent strains of Saccharomyces rouxii among 100 yeast strains other than Saccharomyces cerevisiae tested. The plasmids, pSR1 and pSR2, had almost the same mass (approximately 4 X 10(6) daltons) as 2-micrometers DNA of S. cerevisiae. pSR1 and pSR2 gave identical restriction maps with restriction endonucleases BamHI, EcoRI, HincII, HindIII, and XhoI, and both lacked restriction sites for PstI, SalI, and SmaI. These maps, however, differed significantly from that of S. cerevisiae 2-micrometers DNA. Restriction analysis also revealed two isomeric forms of each plasmid and suggested the presence of a pair of inverted repeat sequences in the molecules where intramolecular recombination took place. DNA-DNA hybridization between the pSR1 and pSR2 DNAs indicated significant homology between their base sequences, whereas no homology was detected between pSR1 and pJDB219, a chimeric plasmid constructed from a whole molecule of 2-micrometers DNA, plasmid pMB9, and a 1.2-kilobase DNA fragment of S. cerevisiae bearing the LEU2 gene. A chimeric plasmid constructed with pSR1 and YIp1, the larger EcoRI-SalI fragment of pBR322 ligated with a 6.1-kilobase DNA fragment of S. cerevisiae bearing the HIS3 gene, could replicate autonomously in an S. cerevisiae host and produced isomers, presumably by intramolecular recombination at the inverted repeats.  相似文献   

5.
Inverted DNA repeats: a source of eukaryotic genomic instability.   总被引:17,自引:5,他引:12       下载免费PDF全文
While inverted DNA repeats are generally acknowledged to be an important source of genetic instability in prokaryotes, relatively little is known about their effects in eukaryotes. Using bacterial transposon Tn5 and its derivatives, we demonstrate that long inverted repeats also cause genetic instability leading to deletion in the yeast Saccharomyces cerevisiae. Furthermore, they induce homologous recombination. Replication plays a major role in the deletion formation. Deletions are stimulated by a mutation in the DNA polymerase delta gene (pol3). The majority of deletions result from imprecise excision between small (4- to 6-bp) repeats in a polar fashion, and they often generate quasipalindrome structures that subsequently may be highly unstable. Breakpoints are clustered near the ends of the long inverted repeats (< 150 bp). The repeats have both intra- and interchromosomal effects in that they also create hot spots for mitotic interchromosomal recombination. Intragenic recombination is 4 to 18 times more frequent for heteroalleles in which one of the two mutations is due to the insertion of a long inverted repeat, compared with other pairs of heteroalleles in which neither mutation has a long repeat. We propose that both deletion and recombination are the result of altered replication at the basal part of the stem formed by the inverted repeats.  相似文献   

6.
The plasmid pSB3 of yeast Zygosacharomyces bisporus has been sequenced. It contains 6,615 base pairs, including a pair of inverted repeats (IR) consisting of 391 base pairs and 3 large open reading frames (ORF). One of the ORFs (A gene) participates in the recombination at the IRs and the other two (B and C genes) are necessary for the stable maintenance of this plasmid. The ARS sequence, which functions in a Saccharomyces cerevisiae host, was localized within 168 base pairs consisting of part of one of the IRs and a unique sequence contiguous to it. pSB3 can be maintained as stably in Z. rouxii as in the natural host Z.bisporus. In contrast, pSB3 is maintained fairly unstably in S.cerevisiae. The reason for this instability was found to be inefficient partitioning of pSB3 in S.cerevisiae. The molecular construction of pSB3 resembles that of 2-micron DNA, however, sequence homology at the DNA level was very poor.  相似文献   

7.
We have sequenced the insertion element ISH1.8 which can be present in one or two copies in the genome of phage ΦH of Halobacterium halobium. ISH1.8 is 1895 bp long, has no inverted repeat at its ends, and one only of the two copies is flanked by two 5-bp duplications. An 8-bp sequence composed of 4 bp from each end of ISH1.8 is present in both sites lacking the element. This 8-bp sequence could either be a specific insertion sequence or a part of the element that is left behind upon deletion. The plasmid pΦHL, consisting of the invertible L segment of the phage genome which is, in ΦH2 and ΦH5, flanked by two copies of ISH1.8, contains 112 bp of ISH1.8 and is released from the phage genome by recombination within a direct repeat of 9 bp. This 9-bp sequence (TCCCGCCCT) exists as an inverted repeat in ISH1.8 and therefore as two distinct repeats in phage genomes containing two copies of ISH1.8 in inverted orientation.  相似文献   

8.
K Awane  A Naito  H Araki  Y Oshima 《Gene》1992,121(1):161-165
Most vectors for Saccharomyces cerevisiae are shuttle vectors which can be both propagated and selected in Escherichia coli. The DNA segments, however, which are required for propagation in E. coli are unnecessary and moreover toxic in S. cerevisiae. To delete these harmful DNA fragments from the vector after it is introduced into S. cerevisiae cells, we propose a specific gene conversion mechanism of a yeast plasmid, pSR1. Plasmid pSR1 has a pair of inverted repeats (IRs) that divides the plasmid molecule into two unique regions. Intramolecular recombination frequently occurs at a pair of specific recombination sites in IRs catalyzed by recombinase R, encoded by a pSR1 plasmid gene. This R-mediated recombination is often accompanied by gene conversion in IRs. Thus, a 2.1-kb pBR322 sequence for the E. coli host ligated into one of the IRs of a composite plasmid was automatically and effectively eliminated when the plasmid was introduced into S. cerevisiae cells.  相似文献   

9.
The 113,463-bp nucleotide sequence of the linear plasmid pSLA2-M of Streptomyces rochei 7434AN4 was determined. pSLA2-M had a 69.7% overall GC content, 352-bp terminal inverted repeats with 91% (321/352) identity at both ends, and 121 open reading frames. The rightmost 14.6-kb sequence was almost (14,550/14,555) identical to that of the coexisting 211-kb linear plasmid pSLA2-L. Adjacent to this homologous region an 11.8-kb CRISPR cluster was identified, which is known to function against phage infection in prokaryotes. This cluster region as well as another one containing two large membrane protein genes (orf78 and orf79) were flanked by direct repeats of 194 and 566 bp respectively. Hence the insertion of circular DNAs containing each cluster by homologous recombination was suggested. In addition, the orf71 encoded a Ku70/Ku80-like protein, known to function in the repair of double-strand DNA breaks in eukaryotes, but disruption of it did not affect the radiation sensitivity of the mutant. A pair of replication initiation genes (orf1-orf2) were identified at the extreme left end. Thus, pSLA2-M proved to be a composite linear plasmid characterized by self-defense genes and homology with pSLA2-L that might have been generated by multiple recombination events.  相似文献   

10.
Waldman AS  Tran H  Goldsmith EC  Resnick MA 《Genetics》1999,153(4):1873-1883
Certain DNA sequence motifs and structures can promote genomic instability. We have explored instability induced in mouse cells by long inverted repeats (LIRs). A cassette was constructed containing a herpes simplex virus thymidine kinase (tk) gene into which was inserted an LIR composed of two inverted copies of a 1.1-kb yeast URA3 gene sequence separated by a 200-bp spacer sequence. The tk gene was introduced into the genome of mouse Ltk(-) fibroblasts either by itself or in conjunction with a closely linked tk gene that was disrupted by an 8-bp XhoI linker insertion; rates of intrachromosomal homologous recombination between the markers were determined. Recombination between the two tk alleles was stimulated 5-fold by the LIR, as compared to a long direct repeat (LDR) insert, resulting in nearly 10(-5) events per cell per generation. Of the tk(+) segregants recovered from LIR-containing cell lines, 14% arose from gene conversions that eliminated the LIR, as compared to 3% of the tk(+) segregants from LDR cell lines, corresponding to a >20-fold increase in deletions at the LIR hotspot. Thus, an LIR, which is a common motif in mammalian genomes, is at risk for the stimulation of homologous recombination and possibly other genetic rearrangements.  相似文献   

11.
pKD1 is the only circular plasmid known in the genus Kluyveromyces. Nucleotide sequence analysis has revealed that this 4757 base-pairs long plasmid contained three major open reading frames, A, B, and C, and a pair of inverted repeats of 346 base-pairs. The molecule exists in two isomeric forms generated by internal recombination at these repeats. The functional organization of pKD1 genome appears to be quite analogous to that of the 2u plasmid of Saccharomyces cerevisiae. There is however little homology of sequences between these plasmids, except that the gene A has a dispersed but significant homology with the FLP recombinase gene of the 2u plasmid. S.cerevisiae cells can be transformed by derivatives of pKD1 carrying URA3 gene as a selection marker.  相似文献   

12.
Repair of double-strand breaks by gene conversions between homologous sequences located on different Saccharomyces cerevisiae chromosomes or plasmids requires RAD51. When repair occurs between inverted repeats of the same plasmid, both RAD51-dependent and RAD51-independent repairs are found. Completion of RAD51-independent plasmid repair events requires RAD52, RAD50, RAD59, TID1 (RDH54), and SRS2 and appears to involve break-induced replication coupled to single-strand annealing. Surprisingly, RAD51-independent recombination requires much less homology (30 bp) for strand invasion than does RAD51-dependent repair (approximately 100 bp); in fact, the presence of Rad51p impairs recombination with short homology. The differences between the RAD51- and RAD50/RAD59-dependent pathways account for the distinct ways that two different recombination processes maintain yeast telomeres in the absence of telomerase.  相似文献   

13.
W L Sung  D M Zahab  C A MacDonald  C S Tam 《Gene》1986,47(2-3):261-267
A synthetic 'crossover linker' technique has been designed for gene modification. The linker has a restriction end for an initial 'cohesive end' ligation with one terminus of a linearized plasmid, a middle section carrying modified sequence information, and an 'homology-searching' sequence of 20 bp at its other end, that is homologous to a specific region in the opposite terminus of the plasmid. Inside the Escherichia coli transformation host, intramolecular recombination between the homologous ends of the resultant plasmid intermediate completes the integration of the linker. Using different crossover linkers, a human parathyroid hormone gene which had previously been cloned into plasmid pUC8 was converted to mutant coding sequences via specific base substitution, sequence deletion and sequence insertion.  相似文献   

14.
R N Roy  N Bigelow  J A Dillon 《Plasmid》1988,19(1):39-45
A variant of the cryptic plasmid of Neisseria gonorrhoeae, 4.4 kb in size, was isolated and characterized at the molecular level. This variant harbored a 156-bp insertion which was located between coordinates 3134 and 3135 within the putative cppB gene using the 4.2-kb cryptic plasmid, pJD1, as a reference. The insertion contained a novel EcoRI site and several elements of symmetry (both direct and inverted repeats). Stop codons present in the insertion interrupted the coding capacity of the cppB gene. Although the insertion was within one of two previously characterized 44-bp repeats purportedly involved in site-specific recombination, it was distinct from a 54-bp segment deleted in some cryptic plasmids. The presence of the insertion suggests a mechanism of modulating the expression of the cppB gene at the translational level through DNA rearrangement.  相似文献   

15.
Plasmids containing heteroallelic copies of the Saccharomyces cerevisiae HIS3 gene undergo intramolecular gene conversion in mitotically dividing S. cerevisiae cells. We have used this plasmid system to determine the minimum amount of homology required for gene conversion, to examine how conversion tract lengths are affected by limited homology, and to analyze the role of flanking DNA sequences on the pattern of exchange. Plasmids with homologous sequences greater than 2 kilobases have mitotic exchange rates as high as 2 x 10(-3) events per cell per generation. As the homology is reduced, the exchange rate decreases dramatically. A plasmid with 26 base pairs (bp) of homology undergoes gene conversion at a rate of approximately 1 x 10(-10) events per cell per generation. These studies have also shown that an 8-bp insertion mutation 13 bp from a border between homologous and nonhomologous sequences undergoes conversion, but that a similar 8-bp insertion 5 bp from a border does not. Examination of independent conversion events which occurred in plasmids with heteroallelic copies of the HIS3 gene shows that markers within 280 bp of a border between homologous and nonhomologous sequences undergo conversion less frequently than the same markers within a more extensive homologous sequence. Thus, proximity to a border between homologous and nonhomologous sequences shortens the conversion tract length.  相似文献   

16.
Summary The structure of three members of a repetitive DNA family from the genome of the nematodeCaenorhabditis elegans has been studied. The three repetitive elements have a similar unitary structure consisting of two 451-bp sequences in inverted orientation separated by 491 bp, 1.5 kb, and 2.5 kb, respectively. The 491-bp sequence separating the inverted 451-bp sequences of the shortest element is found adjacent to one of the repeats in the other two elements as well. The combination of the three sequences we define as the basic repetitive unit. Comparison of the nucleotide sequences of the three elements has allowed the identification of the one most closely resembling the primordial repetitive element. Additionally, a process of co-evolution is evident that results in the introduction of identical sequence changes into both copies of the inverted sequence within a single unit. Possible mechanisms are discussed for the homogenization of these sequences. A direct test of one possible homogenization mechanism, namely homologous recombination between the inverted sequences accompanied by gene conversion, shows that recombination between the inverted repeats does not occur at high frequency.  相似文献   

17.
18.
Analysis of a region on plasmid pPGH1 from Pseudomonas putida strain H that is flanked by two copies of IS1383 has revealed an additional element with the typical features of a bacterial insertion sequence. This new IS element, designated IS1384, contains a single ORF of 972 bp, and is flanked by 9-bp inverted repeats. Based on sequence homology and structural characteristics of the putative transposase it encodes, IS1384 belongs to the IS5 subgroup of the IS5 family. Two copies of IS1384 are present on plasmid pPGH1, whereas none could be detected on the chromosome of P. putida strain H. Sequence analysis revealed the presence of two truncated copies of IS1384 on the second plasmid in this strain, pPGH2. The inverted repeats of all IS1384 copies (including the truncated ones) are interrupted by the integration of an IS1383 element. All integrations were found to be site- and orientation-specific. PCR studies and sequence data indicate that IS1383 can form a circular intermediate on excision. In the circular form, the previously described 13-bp inverted repeats of IS1383 are separated by 10 bp that are identical to the 5-bp motif that flanks each side of the element when it is integrated in its target. We provide evidence that these additional nucleotides, although not of inverted symmetry, represent an essential part of the inverted repeats. Furthermore, the data indicate that IS1383 integrated into the inverted repeats of IS1384 by a site-specific recombination rather than a site-specific insertion event.  相似文献   

19.
A C Chang  M B Slade  K L Williams 《Plasmid》1990,24(3):208-217
Ddp2 is a 5.8-kb, high-copy-number, nuclear plasmid found in the eukaryote Dictyostelium discoideum. We have identified two functional domains, a large open reading frame (Rep gene) and a 626-bp fragment containing an origin of replication (ori). The ori, when cloned into a shuttle vector, confers stable extrachromosomal replication in D. discoideum, provided that the Rep gene, which acts in trans, is integrated into the host genome. Ddp2 carries a 501-bp imperfect inverted repeat, and part of the ori overlaps with one of these repeats. The ori sequence contains two direct repeats of 49 bp comprising two 10-bp "TGTCATGACA" palindromes separated by a poly(T.A) sequence. Deletion of either 49-bp repeat abolished extrachromosomal replication.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号