首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
X chromosome inactivation of the human TIMP gene.   总被引:12,自引:0,他引:12       下载免费PDF全文
  相似文献   

3.
X chromosome inactivation represents a compelling example of chromosome-wide, long-range epigenetic gene-silencing in mammals. The cis- and trans-acting factors that establish and maintain the patterns and levels of gene expression from the active and inactive X chromosomes remain incompletely understood; however, the availability of the complete genomic sequence of the human X chromosome, together with complementary approaches that explore the computational biology, epigenetic modifications and gene expression-profiling along the chromosome, suggests that the features of the X chromosome that are responsible for its unique forms of gene regulation are increasingly amenable to experimental analysis.  相似文献   

4.
Takemura M 《Bio Systems》2008,92(2):117-121
Females inherit two X chromosomes from each parent, but males inherit only one from the mother. The POLA gene encodes the catalytic subunit of DNA polymerase alpha (pol-alpha), synthesizing a short DNA primer after RNA priming for DNA chain elongation in eukaryotic DNA replication. The POLA gene is established in the X-added region (XRA) of an X chromosome, translocated from a second autosome about 105 million years ago (mya). Dosage compensation for the mammalian X chromosome is accomplished by the silencing of one X chromosome to equalize gene expression between the male and female. We eutherians must replicate our DNA using pol-alpha expressed from a 'single copy' of genes, whose expression is probably reduced when chromosome translocation occurs. Spontaneous mutation occurring on the 'single' POLA gene, which decreases its replication fidelity, probably accounts for the increase of nucleotide substitution rates more effectively than in other organisms that possess the POLA gene on an autosome pair. Moreover, translocation of the POLA gene from an autosome to the X chromosome might reduce expression of pol-alpha, resulting in promotion of chromosome rearrangement. Therefore, the X-linked POLA gene possibly contributes to greater diversification of eutherian mammals.  相似文献   

5.
6.
The androgen receptor gene (AR), which is located on the long arm of the human X chromosome, was mapped by somatic cell analysis and in situ hybridization in marsupial and monotreme species. Both methods demonstrated that it was located on the X chromosome in each marsupial species, and also in the platypus. We conclude that this gene is part of a highly conserved region of the mammalian X, represented by the human Xq, which formed part of the X chromosome in a mammalian ancestor 150 million years ago. Since this gene is located proximally on the long arm of the monotreme X, which is G-band homologous to the Y and apparently exempt from X chromosome inactivation, the conservation of this region has evidently not depended on its isolation by X-Y differentiation or on X inactivation.  相似文献   

7.
Duchenne muscular dystrophy (DMD) is a severe, progressive, X-linked muscle-wasting disorder with an incidence of approximately 1/3,500 male births. Females are also affected, in rare instances. The manifestation of mild to severe symptoms in female carriers of dystrophin mutations is often the result of the preferential inactivation of the X chromosome carrying the normal dystrophin gene. The severity of the symptoms is dependent on the proportion of cells that have inactivated the normal X chromosome. A skewed pattern of X inactivation is also responsible for the clinical manifestation of DMD in females carrying X;autosome translocations, which disrupt the dystrophin gene. DMD may also be observed in females with Turner syndrome (45,X), if the remaining X chromosome carries a DMD mutation. We report here the case of a karyotypically normal female affected with DMD as a result of homozygosity for a deletion of exon 50 of the dystrophin gene. PCR analysis of microsatellite markers spanning the length of the X chromosome demonstrated that homozygosity for the dystrophin gene mutation was caused by maternal isodisomy for the entire X chromosome. This finding demonstrates that uniparental isodisomy of the X chromosome is an additional mechanism for the expression of X-linked recessive disorders. The proband's clinical presentation is consistent with the absence of imprinted genes (i.e., genes that are selectively expressed based on the parent of origin) on the X chromosome.  相似文献   

8.
9.
10.
11.
Compared with autosomes, the X chromosome shows different patterns of evolution as a result of its hemizygosity in males. Additionally, inactivation of the X during spermatogenesis can make the X chromosome an unfavorable location for male-specific genes. These factors can help to explain why in many species gene content of the X chromosome differs from that of autosomes. Indeed, the X chromosome in mouse is enriched for male-specific genes while they are depleted on the X in Drosophila but show neither of these trends in mosquito. Here, we will discuss recent findings on the ancestral and neo-X chromosomes in Drosophila that support sexual antagonism as a force shaping gene content evolution of sex chromosomes and suggest that selection could be driving male-biased genes off the X.  相似文献   

12.
Both tumorigenic segregant HeLa X human fibroblast hybrids and tumorigenic HeLa (D98/AH-2) cells can be converted to a non-tumorigenic state following introduction of a single copy of a fibroblast t(X;11) chromosome. The translocated chromosome contains approximately 95% of the 11 chromosome and the q26-qter portion of the X chromosome which contains the hypoxanthine guanine phosphoribosyl transferase (HPRT) gene. Introduction of a human X chromosome has no effect on tumorigenic expression. Suppression of tumorigenicity is relieved by selecting cells which have lost the t(X;11) chromosome by growth in medium containing 6-thioguanine (6-TG). Further, reintroduction of the t(X;11) chromosome into tumorigenic 6TGR cells again suppresses tumorigenicity. Thus, the introduction of a single copy of a human chromosome 11 is sufficient to completely suppress the tumorigenic phenotype of HeLa cells and is suggestive of the presence of tumor-suppressor gene(s) on this chromosome.  相似文献   

13.
14.
DNA polymerase alpha and primase are two key enzymatic components of the eukaryotic DNA replication complex. In situ hybridization of cloned cDNAs for mouse DNA polymerase alpha and for the two subunits of mouse primase has been utilized to physically map these genes in the mouse genome. The DNA polymerase alpha gene (Pola) was mapped to the mouse X chromosome in region C-D. The gene encoding the p58 subunit of primase (Prim2) was located to mouse chromosome 1 in region A5-B and the p49 subunit gene (Prim1) was found to be on mouse chromosome 10 in the distal part of band D that is close to the telomere. Current knowledge of mouse and human conserved chromosomal regions along with the findings presented here lead to predictions of where the genes for the DNA primase subunits may be found in the human genome: the p58 subunit gene may be on human chromosome 2 and the p49 subunit gene on human chromosome 12. The mapping of Pola to region C-D of the mouse X chromosome adds a new marker in a conserved region between the mouse X chromosome and region Xp21-22.1 of the human X chromosome.  相似文献   

15.
16.
Several lines of evidence suggest that the X chromosome of various animal species has an unusual complement of genes with sex-biased or sex-specific expression. However, the study of the X chromosome gene content in different organisms provided conflicting results. The most striking contrast concerns the male-biased genes, which were reported to be almost depleted from the X chromosome in Drosophila but overrepresented on the X chromosome in mammals. To elucidate the reason for these discrepancies, we analysed the gene content of the Z chromosome in chicken. Our analysis of the publicly available expressed sequence tags (EST) data and genome draft sequence revealed a significant underrepresentation of ovary-specific genes on the chicken Z chromosome. For the brain-expressed genes, we found a significant enrichment of male-biased genes but an indication of underrepresentation of female-biased genes on the Z chromosome. This is the first report on the nonrandom gene content in a homogametic sex chromosome of a species with heterogametic female individuals. Further comparison of gene contents of the independently evolved X and Z sex chromosomes may offer new insight into the evolutionary processes leading to the nonrandom genomic distribution of sex-biased and sex-specific genes. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Manyuan Long]  相似文献   

17.
Is ZFY the sex-determining gene on the human Y chromosome?   总被引:3,自引:0,他引:3  
The sex-determining region of the human Y chromosome contains a gene, ZFY, that encodes a zinc-finger protein. ZFY may prove to be the testis-determining factor. There is a closely related gene, ZFX, on the human X chromosome. In most species of placental mammals, we detect two ZFY-related loci: one on the Y chromosome and one on the X chromosome. However, there are four ZFY-homologous loci in mouse: Zfy-1 and Zfy-2 map to the sex-determining region of the mouse Y chromosome, Zfx is on the mouse X chromosome, and a fourth locus is autosomal.  相似文献   

18.
Although X chromosome inactivation in female mammals evolved to balance the expression of X chromosome and autosomal genes in the two sexes, female embryos pass through developmental stages in which both X chromosomes are active in somatic cells. Bovine blastocysts show higher expression of many X genes in XX than XY embryos, suggesting that X inactivation is not complete. Here, we reanalyzed bovine blastocyst microarray expression data from a network perspective with a focus on interactions between X chromosome and autosomal genes. Whereas male-to-female ratios of expression of autosomal genes were distributed around a mean of 1, X chromosome genes were clearly shifted towards higher expression in females. We generated gene coexpression networks and identified a major module of genes with correlated gene expression that includes female-biased X genes and sexually dimorphic autosomal genes for which the sexual dimorphism is likely driven by the X genes. In this module, expression of X chromosome genes correlates with autosome genes, more than the expression of autosomal genes with each other. Our study identifies correlated patterns of autosomal and X-linked genes that are likely influenced by the sexual imbalance of X gene expression when X inactivation is inefficient.  相似文献   

19.
Although the X chromosome is usually similar to the autosomes in size and cytogenetic appearance, theoretical models predict that its hemizygosity in males may cause unusual patterns of evolution. The sequencing of several genomes has indeed revealed differences between the X chromosome and the autosomes in the rates of gene divergence, patterns of gene expression and rates of gene movement between chromosomes. A better understanding of these patterns should provide valuable information on the evolution of genes located on the X chromosome. It could also suggest solutions to more general problems in molecular evolution, such as detecting selection and estimating mutational effects on fitness.  相似文献   

20.
X chromosome inactivation refers to the developmentally regulated process of silencing gene expression from all but one X chromosome per cell in female mammals in order to equalize the levels of X chromosome derived gene expression between the sexes. While much attention has focused on the genetic and epigenetic events early in development that initiate the inactivation process, it is also important to understand the events that ensure maintenance of the inactive state through subsequent cell divisions. Gene silencing at the inactive X chromosome is irreversible in somatic cells and is achieved through the formation of facultative heterochromatin (visible as the Barr body) that is remarkably stable and faithfully preserved. Here we review the many features of inactive X chromatin in terminally differentiated cells and address the highly redundant mechanisms of maintaining the inactive X chromatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号