首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cell shrinkage, or the loss of cell volume, is a ubiquitous characteristic of programmed cell death that is observed in all examples of apoptosis, independent of the death stimulus. This decrease in cell volume occurs in synchrony with other classical features of apoptosis. The molecular basis for cell shrinkage during apoptosis involves fluxes of intracellular ions including K+, Na+, and Cl-. Here we show for the first time that these ion fluxes, but not cell shrinkage, are necessary for apoptosis. Using sodium-substituted medium during anti-Fas treatment of Jurkat cells, we observed cellular swelling, a property normally associated with necrosis, in contrast to the typical cell shrinkage. Surprisingly, these swollen cells displayed all of the other classical features of apoptosis, including chromatin condensation, externalization of phosphatidylserine, caspase activity, poly(ADP)-ribose polymerase cleavage, and internucleosomal DNA degradation. These swollen cells had a marked decrease in intracellular potassium, and subsequent inhibition of this potassium loss completely blocked apoptosis. Reintroduction of sodium ions in cell cultures reversed this cellular swelling, resulting in a dramatic loss of cell volume and the characteristic apoptotic morphology. Additionally, inhibition of sodium influx using a sodium channel blocker saxitoxin completely prevented the onset of anti-Fas-induced apoptosis in Jurkat cells. These findings suggest that sodium influx can control not only changes in cell size but also the activation of apoptosis, whereas potassium ion loss controls the progression of the cell death process. Therefore cell shrinkage can be separated from other features of apoptosis.  相似文献   

2.
Jurkat cells undergo apoptosis in response to anti-Fas antibody through a caspase-dependent death cascade in which calcium signaling has been implicated. We have now evaluated the role of calcium during this death cascade at the single cell level in real time utilizing flow cytometric analysis and confocal microscopy. Fluo-3 and propidium iodide were employed to evaluate calcium fluxes and to discriminate between viable and non-viable cells, respectively. Anti-Fas treatment of Jurkat cells resulted in a sustained increase in intracellular calcium commencing between 1 and 2 h after treatment and persisting until subsequent loss of cell membrane integrity. The significance of this rise in calcium was evaluated by buffering intracellular calcium with BAPTA and/or removing calcium from the extracellular medium and monitoring the effects of these manipulations on calcium signaling and components of the apoptotic process. Complete inhibition of the anti-Fas induced rise in intracellular calcium required both chelation of [Ca(2+)](i) and removal of extracellular calcium. Interestingly, this condition did not abrogate several events in Fas-induced apoptosis including cell shrinkage, mitochondrial depolarization, annexin binding, caspase activation, and nuclear poly(A)DP-ribose polymerase cleavage. Furthermore, calcium-free conditions in the absence of anti-Fas antibody weakly induced these apoptotic components. In marked contrast, calcium depletion did not induce DNA degradation in control cells, and inhibited apoptotic DNA degradation in response to anti-Fas. These data support the concept that the rise in intracellular calcium is not a necessary component for the early signal transduction pathways in anti-Fas-induced apoptosis in Jurkat cells, but rather is necessary for the final degradation of chromatin via nuclease activation.  相似文献   

3.
Cell shrinkage and loss of intracellular K(+) are early requisite features for the activation of effector caspases and apoptotic nucleases in Fas receptor-mediated apoptosis of Jurkat cells, although the mechanisms responsible for both process remain unclear (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436-32442). We have now investigated the role of protein kinase C (PKC)-dependent signaling in the regulation of Fas-induced cell shrinkage and loss of K(+) during apoptosis. Anti-Fas induced cell shrinkage was blocked during PKC stimulation by the phorbol ester 12-O-tetradecanoylphorbol-3-acetate (PMA) and by bryostatin-1. Conversely, inhibition of PKC with G?6976, enhanced the anti-Fas-mediated loss of cell volume. Analyses of mitochondrial membrane potential and DNA fragmentation revealed that the PKC-mediated effect observed in cell volume is propagated to these late features of apoptosis. Flow cytometric analyses and (86)Rb efflux experiments revealed that a primary effect of PKC appears to be on the modulation of Fas-induced K(+) efflux, since both PMA and bryostatin-1 inhibited extrusion of K(+) that occurs during Fas-mediated cell death, and G?6976 exacerbated the effect of anti-Fas. Interestingly, high extracellular K(+) significantly blocked the effect of anti-Fas alone or anti-Fas combined with G?6976, suggesting an underlying effect of PKC on K(+) loss. Western blot analyses showed the caspase-dependent proteolysis of PKC isotypes delta, epsilon, and theta in whole cell extracts from anti-Fas treated Jurkat T cells. However, stimulation of PKC by PMA or bryostatin-1 prevented this isotypic-specific PKC cleavage during apoptosis, providing further evidence that PKC itself exerts an upstream signal in apoptosis and controls the caspase-dependent proteolytic degradation of PKC isotypes. Finally, we show that PMA or bryostatin-1 prevents the activation of caspase-3 and caspase-8. Thus, this study shows that the protective effect that PKC stimulation exerts in the Fas-mediated apoptotic pathway occurs at a site upstream of caspases-3 and -8.  相似文献   

4.
Ion gradients across the plasma membrane, fundamentally K(+), play a pivotal role in the execution phase of apoptosis. However, little is known about other monovalent anions (Cl(-)) or cations (Na(+)) in apoptosis. In addition, the relationship between changes in total ion composition and morphological and biochemical events are poorly understood. We investigated simultaneous changes in sodium (Na), chlorine (Cl), and potassium (K) concentrations in stauroporine-induced apoptosis by quantitative electron probe X-ray microanalysis (EPXMA) in single cells. Apoptotic cells identified unequivocally from the presence of chromatin condensation in backscattered electron images were characterized by an increase in intracellular Na, a decrease in intracellular Cl and K concentrations, and a decrease in K/Na ratio. The ouabain-sensitive Rb-uptake assay demonstrated a net decrease in Na(+)/K(+)-ATPase activity, suggesting that increases in Na and decreases in K and the K/Na ratio in apoptotic cells were related with inhibition of the Na(+)/K(+)-ATPase pump. These changes in diffusible elements were associated with externalization of phosphatidyl serine and oligonucleosomal fragmentation of DNA. This alteration in ion homeostasis and morphological hallmarks of apoptosis occur in cells that have lost their inner mitochondrial transmembrane potential and before the plasma membrane becomes permeable.  相似文献   

5.
Unidirectional (22)Na, Li(+) and Rb(+) fluxes and net fluxes of Na(+) and K(+) were measured in U937 human leukemic cells before and after induction of apoptosis by staurosporine (1 microM, 4 h) to answer the question which ion transporter(s) are responsible for changes in cell ion and water balance at apoptosis. The original version of the mathematical model of cell ion and water balance was used for analysis of the unidirectional ion fluxes under the balanced distribution of major monovalent ions across the cell membrane. The values of all major components of the Na(+) and K(+) efflux and influx, i.e. fluxes via the Na(+),K(+)-ATPase pump, Na(+) channels, K(+) channels, Na/Na exchanger and Na-Cl symport were determined. It is concluded that apoptotic cell shrinkage and changes in Na(+) and K(+) fluxes typical of apoptosis in U937 cells induced by staurosporine are caused by a complex decrease in the pump activity, Na-Cl symport and integral Na(+) channel permeability.  相似文献   

6.
Basolateral membranes of Aplysia californica foregut epithelia contain an ATP-dependent Na(+)/K(+) transporter (Na(+)/K(+) pump or Na(+)/K (+) -ATPase). This Na(+)/K(+) pump accounts for both the intracellular Na(+) electrochemical potential (micro) being less than the extracelluar Na(+) micro and the intracellular K(+) micro being more than the extracellular K(+ ) micro. Also, K(+) channel activity resides in both luminal and basolateral membranes of the Aplysia foregut epithelial cells. Increased activity of the Na(+)/K(+) pump, coupled to luminal and basolateral membrane depolarization altered the K(+) transport energetics across the basolateral membrane to a greater extent than the alteration in K(+) transport energetics across the luminal membrane. These results suggest that K(+) transport, either into or out of the Aplysia foregut epithelial cells, is rate-limiting at the basolateral membrane.  相似文献   

7.
Although the Na(+)/K(+) pump is one of the key mechanisms responsible for maintaining cell volume, we have observed experimentally that cell volume remained almost constant during 90 min exposure of guinea pig ventricular myocytes to ouabain. Simulation of this finding using a comprehensive cardiac cell model (Kyoto model incorporating Cl(-) and water fluxes) predicted roles for the plasma membrane Ca(2+)-ATPase (PMCA) and Na(+)/Ca(2+) exchanger, in addition to low membrane permeabilities for Na(+) and Cl(-), in maintaining cell volume. PMCA might help maintain the [Ca(2+)] gradient across the membrane though compromised, and thereby promote reverse Na(+)/Ca(2+) exchange stimulated by the increased [Na(+)](i) as well as the membrane depolarization. Na(+) extrusion via Na(+)/Ca(2+) exchange delayed cell swelling during Na(+)/K(+) pump block. Supporting these model predictions, we observed ventricular cell swelling after blocking Na(+)/Ca(2+) exchange with KB-R7943 or SEA0400 in the presence of ouabain. When Cl(-) conductance via the cystic fibrosis transmembrane conductance regulator (CFTR) was activated with isoproterenol during the ouabain treatment, cells showed an initial shrinkage to 94.2 +/- 0.5%, followed by a marked swelling 52.0 +/- 4.9 min after drug application. Concomitantly with the onset of swelling, a rapid jump of membrane potential was observed. These experimental observations could be reproduced well by the model simulations. Namely, the Cl(-) efflux via CFTR accompanied by a concomitant cation efflux caused the initial volume decrease. Then, the gradual membrane depolarization induced by the Na(+)/K(+) pump block activated the window current of the L-type Ca(2+) current, which increased [Ca(2+)](i). Finally, the activation of Ca(2+)-dependent cation conductance induced the jump of membrane potential, and the rapid accumulation of intracellular Na(+) accompanied by the Cl(-) influx via CFTR, resulting in the cell swelling. The pivotal role of L-type Ca(2+) channels predicted in the simulation was demonstrated in experiments, where blocking Ca(2+) channels resulted in a much delayed cell swelling.  相似文献   

8.
Marinobufagenin (MBG) is an endogenous mammalian cardiotonic steroid involved in the inhibition of Na(+)/K(+)-ATPase. Increased plasma levels have been reported in patients with volume expansion-related hypertension. We have recently demonstrated that MBG impairs first trimester cytotrophoblast (CTB) cell proliferation, migration, and invasion, which may play a role in the development of preeclampsia. However, whether apoptosis contributes to altered CTB cell function by MBG remains unknown. Using the human extravillous CTB cell line SGHPL-4, we examined the effect of MBG and a similar Na(+)/K(+)-ATPase inhibitor, ouabain, on the phosphorylation status of Jnk, p38, and Src. Additionally, we measured apoptosis by caspase 9 and 3/7 activity and by annexin-V staining. We also investigated interleukin-6 (IL-6) secretion with or without p38 and Jnk inhibition. MBG significantly increased the phosphorylation of Jnk, p38, and Src and increased the expression of caspase 9 and 3/7 indicating the activation of apoptosis. MBG treatment also stimulated the expression of the early apoptosis marker, annexin-V, which was prevented by Jnk and p38 inhibition. MBG also stimulated the secretion of IL-6, which was attenuated by p38 inhibition. Ouabain had similar effects to those of MBG, suggesting that the apoptotic effects on CTB cells may be mediated by inhibition of Na(+)/K(+)-ATPase. In conclusion, the MBG-induced impairment of CTB function occurs via activation of Jnk, p38, and Src leading to increased apoptosis and IL-6 secretion. These observations may have clinical applicability with respect to the therapy of preeclampsia.  相似文献   

9.
Na(+)/K(+)-ATPase as a signal transducer.   总被引:19,自引:0,他引:19  
  相似文献   

10.
The linear pentadecapeptide gramicidin A forms an ion channel in the lipid bilayer to selectively transport monovalent cations. Nevertheless, we have surprisingly found that gramicidin A directly inhibits mammalian Na(+)/K(+)-ATPase. Gramicidin A inhibited ATP hydrolysis by Na(+)/K(+)-ATPase from porcine cerebral cortex at the IC(50) value of 8.1 microM, while gramicidin S was approximately fivefold less active. The synthetic gramicidin A analog lacking N-terminal formylation and C-terminal ethanolamine exhibited a weaker inhibitory effect on the ATP-hydrolyzing activity of Na(+)/K(+)-ATPase than gramicidin A, indicating that these end modifications are necessary for gramicidin A to inhibit Na(+)/K(+)-ATPase activity. Moreover, Lineweaver-Burk analysis showed that gramicidin A exhibits a mixed type of inhibition. In addition to the most well-studied ionophore activity, our present study has disclosed a novel biological function of gramicidin A as a direct inhibitor of mammalian Na(+)/K(+)-ATPase activity.  相似文献   

11.
Staurosporine (STS) and etoposide (Eto) induced apoptosis of the human histiocytic lymphoma cells U937 were studied to determine the role of monovalent ions in apoptotic cell shrinkage. Cell shrinkage, defined as cell dehydration, was assayed by measurement of buoyant density of cells in continuous Percoll gradient. The K+ and Na+ content in cells of different density fractions was estimated by flame emission analysis. Apoptosis was evaluated by confocal microscopy and flow cytometry of acridine orange stained cells, by flow DNA cytometry and by effector caspase activity. Apoptosis of U937 cells induced by 1 muM STS for 4 h was found to be paralleled by an increase in buoyant density indicating cell shrinkage. An increase in density was accompanied by a decrease in K+ content (from 1.1 to 0.78 mmol/g protein), which exceeded the increase in Na+ content (from 0.30 to 0.34 mmol/g) and resulted in a significant decrease of the total K+ and Na+ content (from 1.4 to 1.1 mmol/g). In contrast to STS, 50 microM Eto for 4 h or 0.8-8 microM Eto for 18-24 h induced apoptosis without triggering cell shrinkage. During apoptosis of U937 cells induced by Eto the intracellular K(+)/Na+ ratio decreased like in the cells treated with STS, but the total K+ and Na+ content remained virtually the same due to a decrease in K+ content being nearly the same as an increase in Na+ content. Apoptotic cell dehydration correlated with the shift of the total cellular K+ and Na+ content. There was no statistically significant decrease in K+ concentration per cell water during apoptosis induced by either Eto (by 13.5%) or STS (by 8%), whereas increase in Na+ concentration per cell water was statistically significant (by 27% and 47%, respectively). The data show that apoptosis can occur without cell shrinkage-dehydration, that apoptosis with shrinkage is mostly due to a decrease in cellular K+ content, and that this decrease is not accompanied by a significant decrease of K+ concentration in cell water.  相似文献   

12.
Apoptosis results in cell shrinkage and intracellular acidification, processes opposed by the ubiquitously expressed NHE1 Na(+)/H(+) exchanger. In addition to mediating Na(+)/H(+) transport, NHE1 interacts with ezrin/radixin/moesin (ERM), which tethers NHE1 to cortical actin cytoskeleton to regulate cell shape, adhesion, motility, and resistance to apoptosis. We hypothesize that apoptotic stress activates NHE1-dependent Na(+)/H(+) exchange, and NHE1-ERM interaction is required for cell survival signaling. Apoptotic stimuli induced NHE1-regulated Na(+)/H(+) transport, as demonstrated by ethyl-N-isopropyl-amiloride-inhibitable, intracellular alkalinization. Ectopic NHE1, but not NHE3, expression rescued NHE1-null cells from apoptosis induced by staurosporine or N-ethylmaleimide-stimulated KCl efflux. When cells were subjected to apoptotic stress, NHE1 and phosphorylated ERM physically associated within the cytoskeleton-enriched fraction, resulting in activation of the pro-survival kinase, Akt. NHE1-associated Akt activity and cell survival were inhibited in cells expressing ERM binding-deficient NHE1, dominant negative ezrin constructs, or ezrin mutants with defective binding to phosphoinositide 3-kinase, an upstream regulator of Akt. We conclude that NHE1 promotes cell survival by dual mechanisms: by defending cell volume and pH(i) through Na(+)/H(+) exchange and by functioning as a scaffold for recruitment of a signalplex that includes ERM, phosphoinositide 3-kinase, and Akt.  相似文献   

13.
Interaction of large conductance Ca(2+)- and voltage-activated K(+) (BK(Ca)) channels with Na(+)/K(+)-ATPase, caveolin-1, and cholesterol was studied in human melanoma IGR39 cells. Functional BK(Ca) channels were enriched in caveolin-rich and detergent-resistant membranes, i.e. rafts, and blocking of the channels by a specific BK(Ca) blocker paxilline reduced proliferation of the cells. Disruption of rafts by selective depletion of cholesterol released BK(Ca) channels from these domains with a consequent increase in their activity. Consistently, cholesterol enrichment of the cells increased the proportion of BK(Ca) channels in rafts and decreased their activity. Immunocytochemical analysis showed that BK(Ca) channels co-localize with Na(+)/K(+)-ATPase in a cholesterol-dependent manner, thus suggesting their co-presence in rafts. Supporting this, ouabain, a specific blocker of Na(+)/K(+)-ATPase, inhibited BK(Ca) whole-cell current markedly in control cells but not in cholesterol-depleted ones. This inhibition required the presence of external Na(+). Collectively, these data indicate that the presence of Na(+)/K(+)-ATPase in rafts is essential for efficient functioning of BK(Ca) channels, presumably because the pump maintains a low intracellular Na(+) proximal to the BK(Ca) channel. In conclusion, cholesterol could play an important role in cellular ion homeostasis and thus modulate many cellular functions and cell proliferation.  相似文献   

14.
The loss of cell volume is a fundamental feature of apoptosis. We have previously shown that DNA degradation and caspase activity occur only in cells which have shrunken as a result of potassium and sodium efflux (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436-32442). Furthermore, maintaining a normal intracellular potassium concentration represses the cell death process by inhibiting the activity of apoptotic nucleases and suppressing the activation of effector caspases (Hughes, F. M., Jr., Bortner, C. D. Purdy, G. D., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 30567-30576). We have now investigated the relationship between cell shrinkage, ion efflux, and changes in the mitochondrial membrane potential, in addition to the role of caspases in these apoptotic events. Treatment of Jurkat cells with a series of inducers which act via distinct signal transduction pathways, resulted in all of the cell death characteristics including loss of cell viability, cell shrinkage, K(+) efflux, altered mitochondrial membrane potential, and DNA fragmentation. Interestingly, only cells which shrunk had a loss of mitochondrial membrane potential and the other apoptotic characteristics. Treatment of Jurkat cells with an anti-Fas antibody in the presence of the general caspase inhibitor z-VAD, abrogated these features. In contrast, when Jurkat cells were treated with either the calcium ionophore A23187 or thapsigargin, z-VAD failed to prevent cell shrinkage, K(+) efflux, or changes in the mitochondrial membrane potential, while effectively inhibiting DNA degradation. Treatment of Jurkat cells with various apoptotic agents in the presence of either the caspase-3 inhibitor DEVD, or the caspase-8 inhibitor IETD also blocked DNA degradation, but failed to prevent other characteristics of apoptosis. Together these data suggest that the cell shrinkage, K(+) efflux, and changes in the mitochondrial membrane potential are tightly coupled, but occur independent of DNA degradation, and can be largely caspase independent depending on the particular signal transduction pathway.  相似文献   

15.
Cell shrinkage and apoptosis: a role for potassium and sodium ion efflux   总被引:5,自引:0,他引:5  
In this study we have shown that redistribution of the lipid composition of the external and internal leaflets of the PM during apoptosis results in two main alterations in the cell surface, externalisation of PS, and a looser packing of the lipid hydrophobic head groups in the external leaflet. Significantly, neither of these alterations can be directly implicated in the mechanism of apoptotic cell shrinkage, however they do have functions in other phases of the apoptotic process. Progressional studies involving morphological and flow cytometric evaluation, and DNA gel electrophoresis revealed that apoptotic cell shrinkage is associated with a decrease in [Na+]i and [K+]i which occurs after visualisation of chromatin condensation and internucleosomal DNA fragmentation, and prior to apoptotic body formation. When apoptotic cultures were supplemented with inhibitors of the Na+, K+-ATPase pump or the Ca2+-dependent K+ channel, essentially all of the respective Na+ or K+ efflux during apoptosis can be inhibited, suggesting that essentially all of the Na+ and K+ efflux can be ascribed to active pumping via the Na+, K+-ATPase pump and the Ca2+-dependent K+ channel.  相似文献   

16.
Phospholemman (PLM) is a small sarcolemmal protein that modulates the activities of Na(+)/K(+)-ATPase and the Na(+)/Ca(2+) exchanger (NCX), thus contributing to the maintenance of intracellular Na(+) and Ca(2+) homeostasis. We characterized the expression and subcellular localization of PLM, NCX, and the Na(+)/K(+)-ATPase alpha1-subunit during perinatal development. Western blotting demonstrates that PLM (15kDa), NCX (120kDa), and Na(+)/K(+)-ATPase alpha-1 (approximately 100kDa) proteins are all more than 2-fold higher in ventricular membrane fractions from newborn rabbit hearts (1-4-day old) compared to adult hearts. Our immunocytochemistry data demonstrate that PLM, NCX, and Na(+)/K(+)-ATPase are all expressed at the sarcolemma of newborn ventricular myocytes. Taken together, our data indicate that PLM, NCX, and Na(+)/K(+)-ATPase alpha-1 proteins have similar developmental expression patterns in rabbit ventricular myocardium. Thus, PLM may have an important regulatory role in maintaining cardiac Na(+) and Ca(2+) homeostasis during perinatal maturation.  相似文献   

17.
18.
We have previously shown that stimulation of acid secretion in parietal cells causes rapid initial cell shrinkage, followed by Na(+)/H(+) exchange-mediated regulatory volume increase (RVI). The factors leading to the initial cell shrinkage are unknown. We therefore monitored volume changes in cultured rabbit parietal cells by confocal measurement of the cytoplasmic calcein concentration. Although blocking the presumably apically located K(+) channel KCNQ1 with chromanol 293b reduced both the forskolin- and carbachol-induced cell shrinkage, inhibition of Ca(2+)-sensitive K(+) channels with charybdotoxin strongly inhibited the cell volume decrease after carbachol, but not after forskolin stimulation. The cell shrinkage induced by both secretagogues was partially inhibited by blocking H(+)-K(+)-ATPase with SCH28080 and completely absent after incubation with NPPB, which inhibits parietal cell anion conductances involved in acid secretion. The subsequent RVI was strongly inhibited with the Na(+)/H(+) exchanger 1 (NHE1)-specific concentration of HOE642 and completely by 500 muM dimethyl-amiloride (DMA), which also inhibits NHE4. None of the above substances induced volume changes under baseline conditions. Our results indicate that cell volume decrease associated with acid secretion is dependent on the activation of K(+) and Cl(-) channels by the respective secretagogues. K(+), Cl(-), and water secretion into the secretory canaliculi is thus one likely mechanism of stimulation-associated cell shrinkage in cultured parietal cells. The observed RVI is predominantly mediated by NHE1.  相似文献   

19.
To evaluate previously proposed functions of renal caveolar Na(+)/K(+)-ATPase, we modified the standard procedures for the preparation of the purified membrane-bound kidney enzyme, separated the caveolar and noncaveolar pools, and compared their properties. While the subunits of Na(+)/K(+)-ATPase (α,β,γ) constituted most of the protein content of the noncaveolar pool, the caveolar pool also contained caveolins and major caveolar proteins annexin-2 tetramer and E-cadherin. Ouabain-sensitive Na(+)/K(+)-ATPase activities of the two pools had similar properties and equal molar activities, indicating that the caveolar enzyme retains its ion transport function and does not contain nonpumping enzyme. As minor constituents, both caveolar and noncaveolar pools also contained Src, EGFR, PI3K, and several other proteins known to be involved in stimulous-induced signaling by Na(+)/K(+)-ATPase, indicating that signaling function is not limited to the caveolar pool. Endogenous Src was active in both pools but was not further activated by ouabain, calling into question direct interaction of Src with native Na(+)/K(+)-ATPase. Chemical cross-linking, co-immunoprecipitation, and immunodetection studies showed that in the caveolar pool, caveolin-1 oligomers, annexin-2 tetramers, and oligomers of the α,β,γ-protomers of Na(+)/K(+)-ATPase form a large multiprotein complex. In conjunction with known roles of E-cadherin and the β-subunit of Na(+)/K(+)-ATPase in cell adhesion and noted intercellular β,β-contacts within the structure of Na(+)/K(+)-ATPase, our findings suggest that interacting caveolar Na(+)/K(+)-ATPases located at renal adherens junctions maintain contact of two adjacent cells, conduct essential ion pumping, and are capable of locus-specific signaling in junctional cells.  相似文献   

20.
During early apoptosis, adult cardiomyocytes show unusual beating, suggesting possible participation of abnormal Ca(2+) transients in initiation of apoptotic processes in this cell type. Simultaneously with the beating, these cells show dynamic structural alteration resulting from cytoskeletal disintegration that is quite rapid. Because of the specialized structure and extensive cytoskeleton of cardiomyocytes, we hypothesized that its degradation in so short a time would require a particularly efficient mechanism. To better understand this mechanism, we used serial video microscopy to observe beta-adrenergic stimulation-induced apoptosis in isolated adult rat cardiomyocytes while simultaneously recording intracellular Ca(2+) concentration and cell length. Trains of Ca(2+) transients and corresponding rhythmic contractions and relaxations (beating) were observed in apoptotic cells. Frequencies of Ca(2+) transients and beating gradually increased with time and were accompanied by cellular shrinkage. As the cells shrank, amplitudes of Ca(2+) transients declined and diastolic intracellular Ca(2+) concentration increased until the transients were lost. Beating and progression of apoptosis were significantly inhibited by antagonists against the L-type Ca(2+) channel (nifedipine), ryanodine receptor (ryanodine), inositol 1,4,5-trisphosphate receptor (heparin), sarco(endo)plasmic Ca(2+)-ATPase (thapsigargin), and Na(+)/Ca(2+) exchanger (KB-R7943). Electron-microscopic examination of beating cardiomyocytes revealed progressive breakdown of Z disks. Immunohistochemical analysis and Western blot confirmed that disappearance of Z disk constituent proteins (alpha-actinin, desmin, and tropomyosin) preceded degradation of other cytoskeletal proteins. It thus appears that, in adult cardiomyocyte apoptosis, Ca(2+) transients mediate apoptotic beating and efficient sarcomere destruction initiated by Z disk breakdown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号