首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Insertion and replication of the Pseudomonas aeruginosa mutator phage D3112   总被引:4,自引:0,他引:4  
D3112 is a temperate bacteriophage of P. aeruginosa with heterogeneous sequences at one extremity of the virion DNA molecule. Infection of strain PAOl with phage D3112 results in a 40- to 65-fold increase in the frequency of ami mutants resistant to fluoroacetamide. Nine ami::D3112 prophages have been mapped to distinct sites within the ami locus by Southern blotting experiments with a cloned ami+ probe. All prophages have the same restriction map as the D3112 genome extracted from phage particles. The position of D3112 insertions correlates with the phenotype and reversion behavior of the ami mutants. Induction of D3112cts prophages results in amplification of internal prophage segments as discrete restriction fragments before the terminal viral fragments are visible as sharp hybridizing species. This indicates that D3112 replication is accompanied by recombination of prophage termini to numerous sites in the bacterial genome. Chromosomal junction fragments of an ami::D3112cts prophage are maintained through most of the replication cycle but are cleaved shortly before cell lysis, apparently by the viral encapsidation system.  相似文献   

2.
The behavior of Escherichia coli cells carrying RP4 plasmid which contains the genome of a Mu-like D3112 phage specific for Pseudomonas aeruginosa was studied. Two different types of D3112 genome expression were revealed in E. coli. The first is BP4-dependent expression. In this case, expression of certain D3112 genes designated as "kil" only takes place when RP4 is present. As a result, cell division stops at 30 degrees C and cells form filaments. Cell division is not blocked at 42 degrees C. The second type of D3112 genome expression is RP4-independent. A small number of phage is produced independently of RP4 plasmid but this does not take place at 42 degrees C. No detectable quantity of the functionally active repressor of the phage was determined in E. coli (D3112). It is possible that the only cause for cell stability of E. coli (D3112) or E. coli (RP4::D3112) at 42 degrees C in the absence of the repressor is the fact of an extremely poor expression of D3112. In another heterologous system, P. putida both ways of phage development (lytic and lysogenic) are observed. This special state of D3112 genome in E. coli cells is proposed to be named "conditionally expressible prophage" or, in short, "conex-phage", to distinguish it from a classical lysogenic state when stability is determined by repressor activity. Specific blockade of cell division, due to D3112 expression, was also found in P. putida cells. It is evident that the kil function of D3112 is not specific to recognize the difference between division machinery of bacteria belonging to distinct species or genera. Protein synthesis is needed to stop cell division and during a short time period this process could be reversible. Isolation of E. coli (D3112) which lost RP4 plasmid may be regarded as an evidence for D3112 transposition in E. coli. Some possibilities for using the system to look for E. coli mutants with modified expression of foreign genes are considered.  相似文献   

3.
Bacterial cells lysogenic for D3112, a transposable Pseudomonas aeruginosa phage restrict the growth of a related heteroimmune B39 phage. The lysogens are divided into two different types PAO(D3112). In the lysogens of the type I the efficiency of B39 growth only decreases slightly, the lysogens of the type II restricting completely the growth of this phage (e.o.p. is less than 10(-7). As shown by the results of Southern hybridization experiments, lysogens of the type I are monolysogens, while those of the type II are double or polylysogens. Restriction of B39 in PAO(D3112) is caused by expression of a locus in the D3112 genome. The locus has been termed as cip (control of interaction of phages). The cip locus was mapped at the interval 1.3-2.45 kb of the D3112 physical map using different deletion derivatives of D3112. Expression of cip only takes place in the prophage state and not during the phage lytic development. When expressed, cip affects the early steps in the growth of B39 lowering the level of integration and transposition processes; the effect is not dependent on the way of initiation of the lytic cycle (through prophage induction or infection).  相似文献   

4.
The processes of replication and transposition of Pseudomonas aeruginosa transposable phage D3112 in cells of Escherichia coli (D3112) and E. coli (RP4::D3112) were studied. D3112 genome is a "silent cassette" ("conex-phage"--conditionally expressible) in E. coli cells incubated at 42 degrees C. Two compulsory conditions for D3112 genome expression are incubation at 30 degrees C and the presence in cells of RP4 plasmid. Processes of replication and transposition in E. coli are coupled. RP4 plasmid stimulates D3112 DNA synthesis in E. coli at least by two order of magnitude. In correspondence with this observation is the fact that when Mg2+ is present in high concentration (0.1 M) in a cultural medium, the production of mature phage is enhanced by two order of magnitude in E. coli (RP4::D3112) or in E. coli (D3112, RP4) cells, and is approx. 10(-1)-10(-2) phage per cell. No influence of Mg on phage production is observed in E. coli (D3112) cells.  相似文献   

5.
D3112 phage was shown to replicate via the process of coupled replication--transposition: the phage DNA is not excised from the chromosome after prophage induction and new phage copies insert into many different sites. The transposition is controlled by two D3112 early genes--A (mapped in the 1.5-3 kbp region) and B (3-4.5 kbp), and requires intact attL site (involvement of the phage right end attR not studied). D3112 is capable to transpose RP4 plasmid into the chromosome; both the D3112 and RP4 transpositions are rec-independent. The product of the early C gene which is not required for D3112 transposition has pleiotropic effect on the development of D3112 and is necessary for the process of D3112 DNA excision from the chromosome, for cell lysis as well as for mature phage production. We suggest that this gene is responsible for positive regulation of D3112 late genes expression, similar to the C gene of Mu phage or Q gene of lambda. Mutations in four D3112 late genes ts25, ts35, ts73 and ts110 do not affect transposition or excision processes. No detectable (less than 0.02 copies per cell) amount of linear or circular D3112 DNA is formed during the replication--transposition. Hence, in the course of replication and transposition processes D3112 genome has its ends permanently bound covalently to the chromosome. The excision of the D3112 DNA takes place at late stages.  相似文献   

6.
It has been demonstrated that the genome of phage D3112 of Preudomonas aeruginosa can be transposed into Escherichia coli chromosome as a component of the hybrid plasmid RP4 TcrKms::D3112. Also, transposition of D3112 from E. coli (D3112) chromosome into RP4 plasmid occurs. The phage stimulates the chromosome mobilizing activity of RP4 plasmid, similar to other transposons. E. coli (RP4::D3112) cells were previously shown to form no colonies at 30 degrees C. Auxotrophic mutants and mutants incapable of utilizing different carbohydrates were found among E. coli clones survived after a long incubation at 30 degrees C (at frequencies approximately 10(-3) - 10(-4). These mutants inherited stably the capability to produce D3112 phage. E. coli auxotrophic mutants have arisen indeed as a consequence of phage integration into the E. coli chromosome, since prototrophic transductants derived from these mutants after their treatment with generalized transducing P1 phage have lost the ability to produce D3112 phage. Clones with mutations in Km or Tc genes of RP4 plasmid, occurring at high frequencies (about 3%) were found after introduction of RP4 into E. coli (D3112). These mutant RP4 plasmids carry insertions of D3112 genomes. Clones of E. coli which lost mutant plasmids still produce D3112 and retain their initial auxotrophic mutations.  相似文献   

7.
Hybrid plasmids obtained as a result of Mu phage insertions into the RP4::D3112 plasmid in Escherichia coli cells were studied. Stable maintenance of RP4::D3112 plasmid in E. coli cells was provided by using the D3112 phage genome with a point polar mutation in the A gene which prevented early genes' expression. The presence of D3112A- in the RP4 plasmid has been shown to have no effect on efficiency of phage Mu transposition into this plasmid. Moreover, RP4 and D3112 genomes were equivalent targets for Mu integration. The integration of transposable phage into genome of nonrelated phage can be used as one of the approaches to construct recombinant phage genomes in vivo in the absence of DNA homology.  相似文献   

8.
9.
The wild type of D3112, a transposable phage of Pseudomonas aeruginosa can not be introduced as a portion of the hybrid plasmid RP4::D3112 into Pseudomonas putida cells. It is only possible when phage D3112 carries mutations designated lpc (lethal for P. putida and Escherichia coli). Analysis of heteroduplex molecules between DNAs of phages D3112w+ and D3112lpc demonstrated the absence of nonhomology regions, which suggests that lpc is a point mutation. The lpc2 mutation was located within the interval 20-29.9 kb of the phage genome.  相似文献   

10.
11.
Escherichia coli (RP4 :: D3112) bacteria manifest Tcs phenotype (thirty centigrade sensitivity), i.e. the cells do not divide and form colonies under conditions of lowered temperature (30 degrees C and lower), while cells grow normally at 42 degrees C. In this work it is demonstrated that replication-transposition of D3112 and the Tcs phenotype depend on no recA system of E.coli. Following events lead to the loss of the Tcs phenotype (in E.coli (RP4 :: D3112) cells survived after growing at 30 degrees C): occurrence of mutations in bacterial, phage and plasmid genomes, elimination of DNA of hybrid plasmid or RP4 DNA (a portion of DNA) as well as integration of the hybrid plasmid into bacterial chromosome. In the latter case, the E.coli (D3112) cells acquired the properties shared by the initial bacteria and those with the Tcs phenotype. Such clones are designated tcl (thirty centigrade low sensitivity), they are able to form colonies at 30 degrees C but their growth is more slow, they maintain instability at lowered temperature and continue to produce D3112 phage. The tcl clones in which replication-transposition of D3112 DNA in less effective than in the tcs clones are a suitable object for the study of genetic rearrangements caused by D3112 phage transposon. It is shown that either complete RP4 genome or its portion are comprised between direct repeats of D3112 and are built into various chromosomal sites, i.e. cointegrates are being formed. Two types of deletions are revealed: eliminating sites of RP4 plasmid adjacent to the left end of D3112 genome as well as deletions of the D3112 genome. It is demonstrated that alteration in the growth nature of E.coli, carrying D3112 DNA, at 30 degrees C depends on the copy number of D3112 per bacterial cell.  相似文献   

12.
Mit'kina LN  Krylov VN 《Genetika》2000,36(10):1330-1339
Properties of natural hybrid transposable phages (TP) of Pseudomonas aeruginosa, including phage PL24 and lysogens for this phage, were studied. PL24 possesses the properties of TP from two previously described groups, B3 and D3112. Its genome, unlike the genome of D3112, contains many sites susceptible to the SalGI restriction endonuclease and possesses no more than 100 nucleotides of bacterial origin located at the left genome end. However, unlike B3, phage PL24 failed to induce auxotrophic mutants upon integration in the bacterial genome. This phage differed from both B3 and D3112 in sensitivity to chloroform treatment. A more detailed examination of a group containing 25 randomly isolated lysogens for phage PL24 revealed previously unknown processes occurring at early stages of bacterial lysogenization. There are at least two different modes of cell lysogenization with phage PL24. In the first case, the emerging lysogens contained a single prophage genome located (in each lysogen) at individual sites. In the second case, polylysogenic bacteria appeared, and, after primary integration of a phage genome, replicative transposition occurred at new sites (often accompanied by the appearance of prophage clusters at these sites). The choice of the mode of lysogenization can be determined both by differences in the physiological state of bacteria and by specific features of phage PL24, which possibly affect the time of repressor accumulation to the concentration sufficient for blocking phage growth or the stability of the lysogenic state.  相似文献   

13.
The hybrid plasmid RP4::D3112 becomes unstable in Escherichia coli K-12 cells under certain growth conditions. The deletion mutants of this plasmid are formed at a high frequency. All the deletions selected have a specific feature: they start in the left end, at the point of joining of plasmid and phage DNA, and remove different portions of the phage genome. The deletion mutants have been used for genetic mapping of D3112. We have localized the repressor gene cI (0-1.3 kb), 3 early genes (1.3-14.2 kb) and two groups of late genes (14.2-29.9 and 29.9-38 kb). Electron microscope studies of RP4::D3112 DNA and its deletion derivatives have shown that integration of D3112 genome in RP4 occurs through the ends of the genome, without permutations. It appears that bacterial nucleotide sequences joined to DNA from mature D3112 particles, to the right end of D3112 genome, are lost. Thus, transposable phages D3112 of Pseudomonas aeruginosa and E. coli Mu phage have some similarities in the genome organization and in the way of their integration into the host DNA.  相似文献   

14.
It is found that bacteriophages B3 and B39 specific for Pseudomonas aeruginosa have the same genome structure as previously described phage D3112. On the right (S) end of their genomes a variable non-phage DNA is located (approximately 0.9-2.5 kilobases for different phages). It is probable that this variable DNa has its origin from different regions of bacterial chromosome. In genome of one of the phages, B3 phage, such variable DNA (not more than 150 base pairs) was found on the left end of DNA molecule. Isolation of a viable B3XD3112 recombinant phage and analysis of its genome with restriction technique and with studies of homo- and heteroduplex molecules had confirmed genetical relationship of B3 and D3112. Some essential non-homology of B3 and D3112 DNAs have been found on the right ends of genomes of the phages.  相似文献   

15.
16.
The influence of ts mutations in the early and late genes of transposable phage D3112 on phage morphogenesis was studied. The mutations in the early genes A, B and C were shown to suppress morphogenesis of D3112. Six genes (D, E, F, G, H and I), located from 14 to 29 kbp of the phage physical map, control morphogenesis of phage head. Five genes (J, K, L, M and N), clustered in the 29-36 kbp region of the map, control morphogenesis of tail. The similarity of genetic organization of the Escherichia coli transposable phage Mu and the Pseudomonas aeruginosa phage D3112 is discussed.  相似文献   

17.
The possibility of using a model system (which included RP4::Mu plasmid and D3112 phage in Pseudomonas aeruginosa cells) for analysis of compatibility of transposable Escherichia coli phage Mu and P. aeruginosa phage D3112, as phages and transposons, was studied. No interaction was observed during the vegetative growth of phages. The majority of the hybrid RP4::Mu plasmids lost the Mu DNA after insertion of D3112 into RP4::Mu. The phenomenon was not a result of transposition immunity. We consider the loss of the Mu DNA as a consequence either of plasmid RP4::Mu instability in P. aeruginosa cells, because of the lack of functional Mu repressor, or of some D3112-encoded activity involved in its transposition. For the inambiguous conclusion on compatibility of two phages as transposons, it is necessary to modify the model system, eliminating the possibility of Mu phage replication--transposition.  相似文献   

18.
Several hybrid RP4 plasmids containing the genome of heat-inducible D3112cts15 phage integrated into 2 different sites of RP4 were selected. It was shown that the plasmids RP4::D3112cts15 mobilized the chromosome of Pseudomonas aeruginosa from many sites located in different chromosome regions. Chromosomal recombinants are, formed at frequencies of about 10(-4) per recipient cell. Analysis of coinheritance of unselected markers showed that the majority of recombinants inherited short donor chromosome fragments (about 5 min). R' plasmids can be easily selected by mating with a rec- recipient. For instance, the frequency of selection of R' plasmids containing argH+ locus was about 10(-5) per donor cell. Conjugative transfer of RP4::D3112cts15 into nonlysogenic strains PAO P. aeruginosa results in partial or complete loss of prophage from a hybrid plasmid. The RP4::D3112cts15 plasmids appear to have retained the broad host range of the original RP4 (they are maintained in P. putida and Escherichia coli).  相似文献   

19.
Using a large group of newly isolated deletion mutants of prophage D3112 the location of all known mutations of D3112 phage was more precisely defined. The mutations affecting establishment of lysogenic state were mapped in two regions of the genome- 0-1.3 and 29-30 kb. The replicative A gene is mapped between 1.3 and 4.9 kb, the second replicative B gene being situated on the right of the A gene, between 4.9 and 9.4 kb. The C gene which is responsible for positive regulation of phage late genes' expression is mapped within the 9-12 kb region. It is suggested that promoter of the gene C is situated within the same interval. Mutations were isolated in the Lys gene which is responsible for host cell lysis. The gene is located within the interval 14-22 kb of the physical map. The order of morphogenetic genes in the late genome region was also established.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号