首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter approximately 0.1 and 0.2 microm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 degrees C, this temperature corresponding closely to the heat capacity maxima (T(em)) of DNPC MLVs and LUVs (T(em) approximately 21 degrees C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of T(em). This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain trans-->gauche isomerization.  相似文献   

2.
The partition coefficients (K(P)) of a series of single-chain and double-chain fluorescent amphiphiles, between solid ordered (P(beta') and L(beta)) and liquid disordered (L(alpha) of the type l(d)) lipid phases coexisting in the same lipid bilayer, was studied using steady-state fluorescence emission anisotropy. The single-chain amphiphiles were N-(7-nitrobenzoxa-2, 3-diazol-4-yl)-alkylamines, and the double-chain amphiphiles were N-(7-nitrobenzoxa-2, 3-diazol-4-yl)-phosphatidylethanolamines with chain lengths of 12-18 carbon atoms. Saturated 18-carbon alkyl/acyl chain compounds were also compared with Delta(9)-cis unsaturated chains of the same chain length. The fluorescence anisotropy of the probes was examined in lipid bilayers (multilamellar vesicles) prepared from an equimolar mixture of dilauroylphosphatidylcholine and distearoylphosphatidylcholine and studied as a function of temperature through the entire temperature range of coexistence of ordered gel phases and a disordered fluid phase in this system. The unsaturated chain amphiphiles partitioned exclusively into the fluid phase whenever this phase was present, as did the saturated chain amphiphiles with the shortest chains (C(12:0)), while K(P) ranges between 1 and 2, in favor of the L(beta) solid phase, for the amphiphiles with long saturated (C(18:0)) alkyl/acyl chains, with intermediate behavior for the intermediate chain lengths. All probes appeared to be totally excluded from P(beta') solid (gel) phases. The technique was also used to determine partitioning of some of the probes between coexisting liquid ordered (cholesterol-containing) (l(o)) and liquid disordered (l(d)) L(alpha) phases. In this case the ratio of signal amplitude to noise allowed us to obtain a qualitative, but not quantitative, measure of the phase partitioning of the probes. We conclude that the partitioning behavior of the probes examined between coexisting l(o) and l(d) phases is qualitatively similar to that observed between solid ordered and liquid disordered phases.  相似文献   

3.
Ceramide is an important bioactive sphingolipid involved in a variety of biological processes. The mechanisms by which ceramide regulates biological events are not fully understood, but may involve alterations in the biophysical properties of membranes. We now examine the properties of ceramide with different acyl chains including long chain (C16- and C18-), very long chain (C24-) and unsaturated (C18:1- and C24:1-) ceramides, in phosphatidylcholine model membranes. Our results show that i) saturated ceramides have a stronger impact on the fluid membrane, increasing its order and promoting gel/fluid phase separation, while their unsaturated counterparts have a lower (C24:1-) or no (C18:1-) ability to form gel domains at 37°C; ii) differences between saturated species are smaller and are mainly related to the morphology and size of the gel domains, and iii) very long chain ceramides form tubular structures likely due to their ability to form interdigitated phases. These results suggest that generation of different ceramide species in cell membranes has a distinct biophysical impact with acyl chain saturation dictating membrane lateral organization, and chain asymmetry governing interdigitation and membrane morphology.  相似文献   

4.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. The NBD group of acyl chain labeled NBD lipids is known to loop up to the membrane interface in fluid phase membranes. However, the organization of these lipids in gel phase membranes is not resolved. In this paper, we monitored the influence of the membrane phase state on the looping up behavior of acyl chain labeled NBD lipids utilizing red edge excitation shift (REES) and other sensitive fluorescence approaches. Interestingly, our REES results indicate that NBD group of lipids, which are labeled at the fatty acyl region, resides in the more hydrophobic region in gel phase membranes, and complete looping of the NBD group occurs only in the fluid phase. This is supported by other fluorescence parameters such as polarization and lifetime. Taken together, our results demonstrate that membrane packing, which depends on temperature and the phase state of the membrane, significantly affects the localization of acyl chain labeled NBD lipids. In view of the wide ranging use of NBD-labeled lipids in cell and membrane biology, these results could have potentially important implications in future studies involving these lipids as tracers.  相似文献   

5.
The quenching of probe fluorescence by spin-labeled phospholipid has been used to determine the distribution of a series of n-(9-anthroyloxy) fatty acids between coexisting gel and fluid liquid-crystal phases in multilamellar phospholipid vesicles. The phase distribution ratio in every case is found to favor the fluid lipid phase, but is much greater between fluid and Ca2+-induced gel than between fluid and thermal gel. For a given gel type, n-(9-anthroyloxy)stearic acids with n = 3, 6, 9 or 12 as well as 11-(9-anthroyloxy)undecanoic acid all exhibit similar behavior, favoring the fluid phase by about a factor of 4 over thermally-induced lipid gel phase and by 18 over Ca2+-induced gel phase. 16-(9-Anthroyloxy)palmitic acid, with the bulky probe at the terminus of the 16-carbon chain, favors the fluid phase less strongly, by a factor of 1.5 or 11 over thermally-induced or Ca2+-induced gel phase, respectively, indicating better packing of this probe in phospholipid gel phases.  相似文献   

6.
Recent studies of five different phosphatidylcholine/phosphatidylcholine (PC/PC) systems indicate that binary mixtures of phosphatidylcholines in which one component has a normalized chain length difference (delta C/CL) in the range of 0.09-0.40 and the other a delta C/CL in the range of 0.42-0.57 exhibit the phase behavior of a eutectic system. Here, delta C is the effective chain-length difference between the two acyl chains, and CL is the effective length of the longer of the two acyl chains for the same lipid molecule in the gel state. In each mixture, gel phase immiscibility occurs over a wide compositional range due to the difference in the gel phase acyl chain packing properties of each component. Although the mixtures differ in the location of their eutectic horizontal, with respect to temperature, all have a similar eutectic point that occurs at a composition of approximately 40 mol percent of the component with the delta C/CL value in the range of 0.42-0.57. Here, we extend these studies by systematically modifying the headgroup of C(17):C(17)PC and then analyzing the mixing behavior of the modified lipid with C(22):C(12)PC using DSC. Progressive demethylation of the C(17):C(17)PC headgroup leads to an increase in gel phase immiscibility and a decrease in the amount of C(22):C(12)PC that comprises the eutectic composition. The temperature defining the location of the eutectic horizontal, however, remains virtually unchanged in all three phase diagrams. Our results suggest that the eutectic composition is influenced by changes in gel phase acyl chain packing that are dependent on headgroup-headgroup interactions. In contrast, the eutectic nature of the phase diagram and the location of its solidus line are properties of acyl chain interactions that are independent of phospholipid headgroup-headgroup interactions.  相似文献   

7.
Veiga MP  Goñi FM  Alonso A  Marsh D 《Biochemistry》2000,39(32):9876-9883
The temperature dependences of the ESR spectra from different positional isomers of sphingomyelin and of phosphatidylcholine spin-labeled in their acyl chain have been compared in mixed membranes composed of sphingolipids and glycerolipids. The purpose of the study was to identify the possible formation of sphingolipid-rich in-plane membrane domains. The principal mixtures that were studied contained sphingomyelin and the corresponding glycerolipid phosphatidylcholine, both from egg yolk. Other sphingolipids that were investigated were brain cerebrosides and brain gangliosides, in addition to sphingomyelins from brain and milk. The outer hyperfine splittings in the ESR spectra of sphingomyelin and of phosphatidylcholine spin-labeled on C-5 of the acyl chain were consistent with mixing of the sphingolipid and glycerolipid components, in fluid-phase membranes. In the gel phase of egg sphingomyelin and its mixtures with phosphatidylcholine, the outer hyperfine splittings of sphingomyelin spin-labeled at C-14 of the acyl chain of sphingomyelin are smaller than those of the corresponding sn-2 chain spin-labeled phosphatidylcholine. This is in contrast to the situation with sphingomyelin and phosphatidylcholine spin-labeled at C-5, for which the outer hyperfine splitting is always greater for the spin-labeled sphingomyelin. The behavior of the C-14 spin-labels is attributed to a different geometry of the acyl chain attachments of the sphingolipids and glycerolipids that is consistent with their respective crystal structures. The two-component ESR spectra of sphingomyelin and phosphatidylcholine spin-labeled at C-14 of the acyl chain directly demonstrate a broad two-phase region with coexisting gel and fluid domains in sphingolipid mixtures with phosphatidylcholine. Domain formation in membranes composed of sphingolipids and glycerolipids alone is related primarily to the higher chain-melting transition temperature of the sphingolipid component.  相似文献   

8.
Here we have studied how the length of the pyrene-labeled acyl chain (n) of a phosphatidylcholine, sphingomyelin, or galactosylceramide affects the partitioning of these lipids between 1), gel and fluid domains coexisting in bovine brain sphingomyelin (BB-SM) or BB-SM/spin-labeled phosphatidylcholine (PC) bilayers or 2), between liquid-disordered and liquid-ordered domains in BB-SM/spin-labeled PC/cholesterol bilayers. The partitioning behavior was deduced either from modeling of pyrene excimer/monomer ratio versus temperature plots, or from quenching of the pyrene monomer fluorescence by spin-labeled PC. New methods were developed to model excimer formation and pyrene lipid quenching in segregated bilayers. The main result is that partition to either gel or liquid-ordered domains increased significantly with increasing length of the labeled acyl chain, probably because the pyrene moiety attached to a long chain perturbs these ordered domains less. Differences in partitioning were also observed between phosphatidylcholine, sphingomyelin, and galactosylceramide, thus indicating that the lipid backbone and headgroup-specific properties are not severely masked by the pyrene moiety. We conclude that pyrene-labeled lipids could be valuable tools when monitoring domain formation in model and biological membranes as well as when assessing the role of membrane domains in lipid trafficking and sorting.  相似文献   

9.
A major problem in defining biological membrane structure is deducing the nature and even existence of lipid microdomains. Lipid microdomains have been defined operationally as heterogeneities in the behavior of fluorescent membrane probes, particularly the fluorescence resonance energy transfer (FRET) probes 7-nitrobenz-2-oxa-1,3-diazol-4-yl-diacyl-sn-glycero-3-phosphoethan olamine (N-NBD-PE) and (N-lissamine rhodamine B sulfonyl)-diacyl-snglycero-3-phosphoethanolamine (N-Rh-PE). Here we test a variety of N-NBD-PEs and N-Rh-PEs containing: (a) undefined acyl chains, (b) liquid crystalline- and gel-state acyl chains, and (c) defined acyl chains matching those of phase separated membrane lipids. The phospholipid bilayer systems employed represent a liquid crystalline/gel phase separation and a cholesterol-driven fluid/fluid phase separation; phase separation is confirmed by differential scanning calorimetry. We tested the hypothesis that acyl chain affinities may dictate the phase into which N-NBD-PE and N-Rh-PE FRET probes partition. While these FRET probes were largely successful at tracking liquid crystalline/gel phase separations, they were less useful in following fluid/fluid separations and appeared to preferentially partition into the liquid-disordered phase. Additionally, partition measurements indicate that the rhodamine-containing probes are substantially less hydrophobic than the analogous NBD probes. These experiments indicate that acyl chain affinities may not be sufficient to employ acyl chain-specific N-NBD-PE/N-Rh-PE FRET probes to investigate phase separations into biologically relevant fluid/fluid lipid microdomains.  相似文献   

10.
Location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) covalently attached to a short (C6) or a long (C12) sn2 acyl chain of a phosphatidylcholine molecule was investigated by fluorescence and solid-state NMR spectroscopy. 2H NMR lipid chain order parameters indicate a perturbation of the phospholipid packing density in the presence of NBD. Specifically, a decrease of molecular order was found for acyl chain segments of the lower, more hydrophobic region. Molecular collision probabilities determined by 1H magic angle spinning nuclear Overhauser enhancement spectroscopy indicate a highly dynamic reorientation of the probe in the membrane due to thermal fluctuations. A broad distribution of the fluorophore in the lipid bilayer is observed with a preferential location in the upper acyl chain/glycerol region. The distribution of the NBD group in the membrane is quite similar for both the long- and the short-chain analog. However, a slight preference of the NBD group for the lipid-water interface is found for C12-NBD-PC in comparison with C6-NBD-PC. Indeed, as shown by dithionite fluorescence assay, the long-chain analog reacts more favorably with dithionite, indicating a better accessibility of the probe by dithionite present in the aqueous phase. Forces determining the location of the fluorophore in the lipid water interface are discussed.  相似文献   

11.
Thermotropic properties of saturated mixed acyl phosphatidylethanolamines   总被引:2,自引:0,他引:2  
The mixed acyl phosphatidylethanolamine (PE) series C(18)C(18)PE, C(18)C(16)PE, C(18)C(14)PE, C(18)C(12)PE, and C(18)C(10)PE has been prepared from the corresponding phosphatidylcholines by phospholipase D mediated transphosphatidylation. The thermotropic behavior of unhydrated and hydrated preparations of these PEs has been investigated by differential scanning calorimetry and 31P NMR spectroscopy. Unhydrated preparations of the PEs undergo crystalline to liquid-crystalline transitions (Tm+h), which correspond to the simultaneous hydration and acyl chain melting of poorly hydrated crystalline samples. Hydrated preparations of the PEs undergo gel to liquid-crystalline transitions (Tm) when scanned immediately subsequent to cooling from temperatures above their respective Tm+hs. Multilamellar bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE pack without significant interdigitation of the phospholipid acyl chains across the bilayer center in the gel phase. C(18)C(10)PE multilamellar preparations exhibit a mixed-interdigitated gel phase packing of the phospholipid acyl chains. Hydrated bilayers of C(18)C(12)PE adopt a mixed-interdigitated gel phase packing at temperatures below 13.9 degrees C. Between 13.9 degrees C and the gel to liquid-crystalline transition temperature of 36.9 degrees C, the C(18)C(12)PE bilayer adopts a noninterdigitated gel phase packing. The metastable behavior of fully hydrated and partially hydrated preparations of the mixed acyl PEs has been investigated. Bilayers of C(18)C(18)PE, C(18)C(16)PE, and C(18)C(14)PE exhibited little or no tendency toward regeneration of the crystalline phase. In contrast, bilayers of C(18C(12)PE and C(18)C(10)PE exhibited a metastability of the liquid-crystalline phase in the temperature interval between Tm and Tm+h, which can allow for the regeneration of the crystalline phase under certain conditions.Bilayers of C(18)C(12)PE exhibited an additional metastability of the noninterdigitated gel phase.  相似文献   

12.
Asymmetric phosphatidylcholine molecules with one acyl chain twice as long as the other, below their phase transition temperature, from a mixed interdigitated phase in which the longer acyl chain spans the entire bilayer. Experimental evidence in the literature suggests that, above their phase transition temperature, these molecules may still exhibit partial interdigitation, with the longer acyl chain extending partially into the opposite leaflet, and are packed more tightly than equivalent symmetric phosphatidylcholines. Using the fluorescence recovery after photobleaching technique, we have investigated the translational diffusion in multilayers of a liquid crystalline phase, asymmetric phosphatidylcholine, 1-stearoyl-2-capryl-phosphatidylcholine (C18C10PC). We used as a fluorescent probe either a phospholipid analog of the same acyl chain composition, NBD-C18C10PE, or the symmetric equivalent of the same molecular weight, N-(7-nitrobenzoxa-2,3-diazol-4-yl)-dimyristoyl-phosphatidyle thanolamine (NBD-DMPE). Translational diffusion coefficients were also determined by using both probes in multilayers of dimyristoyl-phosphatidylcholine (DMPC) and in the eutectic mixture DMPC/C18C10PC (40/60 mol). We found that in a given host lipid, NBD-C18C10PE and NBD-DMPE diffuse at the same rate, which suggests that their bilayer free area is almost identical. This result can be explained by considering that in the liquid crystalline state, the increase in molecular packing is compensated by an increase in acyl chain dynamics. This view, which is supported by literature data, clearly suggests that the acyl chain interdigitation occurring in the liquid crystalline phase is highly dynamic.  相似文献   

13.
Gel-fluid partition coefficients, Kp, were measured for a series of indocarbocyanine dyes in multilamellar lipid vesicles. The dyes examined had alkyl chain lengths from 12 to 22 carbons. Fluorescence quenching by a spin-labeled phosphatidylcholine-enriched fluid phase created a large difference in quantum yield for indocarbocyanine fluorescence between fluid and gel phases, enabling reliable Kp determinations. The values range from Kp = 8 for the 12-carbon chain, favoring a fluid phase over a Ca2-phosphatidylserine rigid phase, to Kp = 0.02 for the 20-carbon chain dye, favoring a distearoylphosphatidylcholine-rich gel phase over the fluid phase.  相似文献   

14.
Involved in a number of diverse metabolic and functional contexts, farnesol is a central component of the mevalonate pathway, post-translationally attaches to proteins, and affects a number of other membrane-associated events. Despite farnesol's biological implications, a detailed analysis of how farnesol affects the physical properties and phase behaviour of lipid membranes is lacking. As (2)H-NMR spectra are sensitive to molecular motions and acyl chain orientation, they can be used to measure the degree of molecular order present in the system. Also, since the (2)H-NMR spectra of fluid and gel phase lipids are very different, they are sensitive probes of membrane phase equilibrium and can be used to determine fluid-gel phase boundaries. In this study, dimyristoyl phosphatidylcholine-d(54) (DMPC-d(54)) bilayers containing varying concentrations of trans-trans farnesol (2.5-20.0 mol%) are investigated over a range of temperatures (8-30 degrees C). Analysis of these spectra has led to the construction of a farnesol-DMPC-d(54) temperature-composition plot. We show that increasing concentrations of farnesol induce a decrease in the fluid-gel phase transition temperature and promote fluid-gel coexistence. Interestingly, farnesol does not seem to affect the quadrupolar splittings (Delta v(Q)) in the fluid phase, i.e., the organization of farnesol within the bilayer and its interaction with phospholipids does not appreciably influence acyl chain order in the fluid phase.  相似文献   

15.
The phase heterogeneity of giant unilamellar dinervonoylphosphocholine (DNPC) vesicles in the course of the main phase transition was investigated by confocal fluorescence microscopy observing the fluorescence from the membrane incorporated lipid analog, 1-palmitoyl-2-(N-4-nitrobenz-2-oxa-1,3-diazol)aminocaproyl-sn-glycero-3-phosphocholine (NBDPC). These data were supplemented by differential scanning calorimetry (DSC) of DNPC large unilamellar vesicles (LUV, diameter ∼0.1 and 0.2 μm) and multilamellar vesicles (MLV). The present data collected upon cooling reveal a lack of micron-scale gel and fluid phase coexistence in DNPC GUVs above the temperature of 20.5 °C, this temperature corresponding closely to the heat capacity maxima (Tem) of DNPC MLVs and LUVs (Tem ≈21 °C), measured upon DSC cooling scans. This is in keeping with the model for phospholipid main transition inferred from our previous fluorescence spectroscopy data for DMPC, DPPC, and DNPC LUVs. More specifically, the current experiments provide further support for the phospholipid main transition involving a first-order process, with the characteristic two-phase coexistence converting into an intermediate phase in the proximity of Tem. This at least macroscopically homogenous intermediate phase would then transform into the liquid crystalline state by a second-order process, with further increase in acyl chain transgauche isomerization.  相似文献   

16.
Sphingomyelins (SMs) are order-imposing phospholipids in cell membranes which interact favorably with cholesterol. The hydrophobic part of SM constitutes a long-chain base with an amide-linked acyl chain, whereas the polar head group is phosphocholine. The long-chain base has a free hydroxyl group in position 3, which is an important donor/acceptor in hydrogen bonding. In newborn mammals, a SM in which a palmitic acid is esterified to the 3-OH has been reported. We have synthesized this SM analog (3O-P-PSM) and studied its properties in bilayer membranes, and also determined its interactions with cholesterol. Fully hydrated 3O-P-PSM bilayers underwent a gel-to-liquid crystalline phase transition at 55.5 °C (ΔH 8 kcal/mol), which is about 15 °C higher than the phase transition temperature of PSM. The 3O-P-PSM displayed rather poor miscibility with PSM in mixed bilayers, suggesting that the third acyl chain interfered significantly with lateral interactions. Bilayers made from 3O-P-PSM were much more resistant to detergent-induced solubilization than bilayers made from PSM. In binary bilayers, cholesterol was able to destabilize the gel phase, and order the fluid phase of 3O-P-PSM, in a concentration-dependent manner. Cholesterol was also able to form sterol-enriched ordered domains with 3O-P-PSM in fluid POPC bilayers. The interaction between cholesterol and 3O-P-PSM was not, however, as favorable as the interaction between cholesterol and PSM. It is unclear what physiological role 3O-P-PSM could play in newborn mammalian membranes. However, it is clear that 3O-P-PSM will form more highly ordered domains than PSM while still having a limited ability to interact with cholesterol.  相似文献   

17.
The distribution of the fluorescent membrane probe 1,6-diphenyl-1,3,5-hexatriene between coexisting gel and fluid phospholipid phases in multilamellar vesicles has been examined using fluorescence quenching by spin-labeled phosphatidylcholine. For both thermally-induced and Ca2+-induced lipid phase separation, the ratio of probe concentration in the fluid liquid-crystal phase to that in the gel phase is found to be independent of either the probe concentration or the relative amounts of gel and fluid lipid phases, and hence is an equilibrium concentration ratio, or partition coefficient.  相似文献   

18.
2H nuclear magnetic resonance (NMR) of Acholesplasma laidlawii membranes grown on a medium supplemented with perdeuterated palmitic acid shows that at 42°C or above, the membrane lipids are entirely in a fluid state, exhibiting the characteristic ‘plateau’ in the variation of deuterium quadrupolar splitting with chain position. Between 42 and 34°C there is a well-defined gel-to-fluid phase transition encompassing the growth temperature of 37°C, and at lower temperatures the membranes are in a highly ordered gel state. The 2H-NMR spectra of the gel phase membranes are similar to those of multilamellar dispersions of chain perdeuterated dipalmitoyl phosphatidylcholine (Davis, J.H. (1979) Biophys. J. 27, 339) as are the temperature dependences of the spectra and their moments. The incorporation of large amounts of cholesterol into the membrane removes the gel to fluid phase transition. Between 20 and 42°C, the position dependence of the orientational order of the hydrocarbon chains of the membranes is similar to that of the fluid phase of the membranes without cholesterol, i.e., they exhibit the plateau in the deuterium quadrupolar splittings. However, the cholesterol-containing membranes have a higher average order, with the increases in order being greater for positions near the carbonyl group of the acyl chains. Below 20°C the 2H spectra of the membranes containing cholesterol change dramatically in a fashion suggestive of complex motional and/or phase behaviour.  相似文献   

19.
In recent work [Vaz, W.L.C., Melo, E.C.C., & Thompson, T.E. (1989) Biophys. J. 56, 869-876] we have shown that translational diffusion studies using fluorescence recovery after photobleaching (FRAP) provide information concerning domain structures and fluid-phase connectivity in lipid bilayers in which solid and fluid phases coexist. In the present paper, translational diffusion of the fluid-phase-soluble, solid-phase-insoluble fluorescent lipid derivative N-(7-nitrobenzoxa-2,3-diazol-4-yl) dilauroyl-phosphatidylethanolamine and the fluid-phase connectivity are examined in lipid bilayers prepared from binary mixtures of 1-docosanoyl-2-dodecanoylphosphatidylcholine (C22:0C12:0PC) and 1,2-diheptadecanoylphosphatidylcholine (di-C17:0PC) by using FRAP. The phosphatidylcholine mixture used provides a eutectic system with a eutectic point at a composition of about 0.4 mole fraction of di-C17:0PC and a temperature of about 37 degrees C [Sisk, R.B., Wang, Z.Q., Lin, H.N., & Huang, C.H. (1990) Biophys. J. 58, 777-783]. Two regions in temperature and composition, respectively below and above 0.4 mole fraction of di-C17:0PC, where fluid and solid phases coexist in the same lipid bilayer, are available for examination of fluid-phase connectivity. In mixtures containing less than 0.4 mole fraction of di-C17:0PC the fluid phase coexists with a mixed interdigitated Lc gel phase composed mostly of C22:0C12:0PC, whereas in mixtures containing greater than 0.4 mole fraction of di-C17:0PC the fluid phase coexists with a P beta' gel phase mostly composed of di-C17:0PC. When the solid phase is a P beta' gel phase, the temperature of fluid-phase connectivity for the mixtures lies close to the fluidus, which means that a small (approximately 20%) mass fraction of solid phase can divide the large bulk of the bilayer that is fluid into nonconnected domains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号