首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(10):1360-1365
Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells.  相似文献   

2.
Quantitating the copy number of demethylated CpG promoter sites of the CD3Z gene can be used to estimate the numbers and proportions of T cells in human blood and tissue. Quantitative methylation specific PCR (qPCR) is useful for studying T cells but requires extensive calibration and is imprecise at low copy numbers. Here we compared the performance of a new digital PCR platform (droplet digital PCR or ddPCR) to qPCR using bisulfite converted DNA from 157 blood specimens obtained from ambulatory care controls and patients with primary glioma. We compared both ddPCR and qPCR with conventional flow cytometry (FACS) evaluation of CD3 positive T cells. Repeated measures on the same blood sample revealed ddPCR to be less variable than qPCR. Both qPCR and ddPCR correlated significantly with FACS evaluation of peripheral blood CD3 counts and CD3/total leukocyte values. However, statistical measures of agreement showed that linear concordance was stronger for ddPCR than for qPCR and the absolute values were closer to FACS for ddPCR. Both qPCR and ddPCR could distinguish clinically significant differences in T cell proportions and performed similarly to FACS. Given the higher precision, greater accuracy, and technical simplicity of ddPCR, this approach appears to be a superior DNA methylation based method than conventional qPCR for the assessment of T cells.  相似文献   

3.
Real-time quantitative PCR (qPCR) is a widely used technique in microbial community analysis, allowing the quantification of the number of target genes in a community sample. Currently, the standard-curve (SC) method of absolute quantification is widely employed for these kinds of analysis. However, the SC method assumes that the amplification efficiency (E) is the same for both the standard and the sample target template. We analyzed 19 bacterial strains and nine environmental samples in qPCR assays, targeting the nifH and 16S rRNA genes. The E values of the qPCRs differed significantly, depending on the template. This has major implications for the quantification. If the sample and standard differ in their E values, quantification errors of up to orders of magnitude are possible. To address this problem, we propose and test the one-point calibration (OPC) method for absolute quantification. The OPC method corrects for differences in E and was derived from the ΔΔC(T) method with correction for E, which is commonly used for relative quantification in gene expression studies. The SC and OPC methods were compared by quantifying artificial template mixtures from Geobacter sulfurreducens (DSM 12127) and Nostoc commune (Culture Collection of Algae and Protozoa [CCAP] 1453/33), which differ in their E values. While the SC method deviated from the expected nifH gene copy number by 3- to 5-fold, the OPC method quantified the template mixtures with high accuracy. Moreover, analyzing environmental samples, we show that even small differences in E between the standard and the sample can cause significant differences between the copy numbers calculated by the SC and the OPC methods.  相似文献   

4.
Acetobacter pasteurianus NCI1380, a thermophilic strain isolated from the surface culture of acetic acid fermentation, showed genetic instability to produce at high frequency spontaneous mutants which were deficient in ethanol oxidation because of the loss of alcohol dehydrogenase activity. Southern hybridization experiments with the cloned alcohol dehydrogenase-cytochrome c gene cluster as the probe showed insertion of an unknown DNA fragment into a specific position in the cytochrome c gene in most of the mutant strains. Cloning and sequencing analyses revealed that the inserted sequence was 1,665 bp in length and had a terminal inverted repeat of 15 bp. In addition, this inserted sequence was found to generate a 4-bp duplication at the inserted site upon transposition. The target site specificity was not very strict, but a TCGA sequence appeared to be preferentially used. The inserted sequence contains two long open reading frames of 461 and 222 amino acids which are overlapped and encoded by different strands. Although these open reading frames showed no homology to any protein registered in the DNA data bases, the longer open reading frame contained many basic amino acids (87 of 461), as was observed with transposases of so-called insertion sequence (IS) elements. All of these characteristics are typical of IS elements, and the sequence was named IS1380. The copy number of IS1380 in a cell of A. pasteurianus NCI1380 was estimated to be about 100. Several strains of acetic acid bacteria also contained IS1380 at high copy numbers. These results suggest that IS1380 is associated with the genetic loss of ethanol-oxidizing ability as well as the genetic instability of acetic acid bacteria in general.  相似文献   

5.
水稻核基因组DNA的YAC克隆和鉴定   总被引:1,自引:0,他引:1  
将EcoRI部分消化的水稻(Oryza sativa L.)细胞核高分子量DNA电泳分部,回收大于200kb的片段,与内切酶消化过的酵母人工染色体(YAC)双质粒载体pJs97。pJS98DNA连接,转化酵母YPH252感受态原生质球,用ura-,TrP-双选择培养基直接筛选转化子,已获得2 000多个克隆。转化子DNA的southern杂交显示插入片段在200~820kb范围。  相似文献   

6.
From Bradyrhizobium japonicum highly reiterated sequence-possessing (HRS) strains indigenous to Niigata and Tokachi in Japan with high copy numbers of the repeated sequences RSalpha and RSbeta (K. Minamisawa, T. Isawa, Y. Nakatsuka, and N. Ichikawa, Appl. Environ. Microbiol. 64:1845-1851, 1998), several insertion sequence (IS)-like elements were isolated by using the formation of DNA duplexes by denaturation and renaturation of total DNA, followed by treatment with S1 nuclease. Most of these sequences showed structural features of bacterial IS elements, terminal inverted repeats, and homology with known IS elements and transposase genes. HRS and non-HRS strains of B. japonicum differed markedly in the profiles obtained after hybridization with all the elements tested. In particular, HRS strains of B. japonicum contained many copies of IS1631, whereas non-HRS strains completely lacked this element. This association remained true even when many field isolates of B. japonicum were examined. Consequently, IS1631 occurrence was well correlated with B. japonicum HRS strains possessing high copy numbers of the repeated sequence RSalpha or RSbeta. DNA sequence analysis indicated that IS1631 is 2,712 bp long. In addition, IS1631 belongs to the IS21 family, as evidenced by its two open reading frames, which encode putative proteins homologous to IstA and IstB of IS21, and its terminal inverted repeat sequences with multiple short repeats.  相似文献   

7.
A standardised method for PvuII-PstI-IS901 restriction fragment length polymorphism (RFLP) typing was developed and evaluated against 173 isolates of Mycobacterium avium subsp. avium and M. avium subsp. silvaticum originating from birds (N=46) and their aviaries (N=5), pigs (N=85), cattle (N=18), reference serotype strains (N=9), humans (N=7), a horse (N=1), a nutria (N=1), and strain M. avium subsp. avium ST 18 (formerly M. avium subsp. paratuberculosis ST 18). PvuII-IS1245 RFLP typing was also performed on all isolates. DNA was digested in parallel by restriction endonucleases PvuII or PstI and hybridised to standard probes prepared by PCR. DNA fingerprints were scanned by CCD camera and analysed by the Gel Compar (Applied Maths, Version 4.1, Kortrijk, Belgium) software using a standard isolate control profile. A total of 52 PvuII-PstI RFLP profiles was described including 25 PvuII RFLP profiles designated A to Y and 25 PstI RFLP profiles designated A1-L3. Profiles were found to be stable in vivo and in vitro after multiple subcultures. High IS901 copy number was associated with a "bird" PvuII-IS1245 RFLP profile and low IS901 copy number with M. avium subsp. avium isolates from humans and the nutria. A virulence assay of 100 IS901-positive isolates using intramuscular infections of pullets showed 83 isolates differentiated into 32 RFLP types to be virulent and 17 isolates differentiated into 12 RFLP types as nonvirulent. Attenuation of virulence for pullets could be attributed to either multiple in vitro subculture, polyclonal infection or human passage and was not related to IS901 or IS1245 profiles.  相似文献   

8.
IS421, a new insertion sequence in Escherichia coli   总被引:2,自引:0,他引:2  
The nucleotide sequence of a new insertion sequence (IS) in Escherichia coli, IS421, was determined. It is 1340 bp long and contains inverted repeats of 22 bp at its termini. It is flanked by 13 bp direct repeats apparently generated upon insertion. There are two ORFs longer than 200 bp in IS421. One can encode a polypeptide of 371 amino acids (aa) and the other, which is on the other strand, can encode a polypeptide of 102 aa. The C-terminal part of the 371 aa polypeptide shows some homology to that of transposases encoded in some other known IS elements. The copy number of IS421 in chromosomal DNA was 4 for E. coli K-12 and B, and 5 for E. coli C, as determined by the Southern hybridization of restriction fragments.  相似文献   

9.
对 6株成团肠杆菌 (Enterobacteragglomerans)接合子的分子生物学进行了分析 .6株菌与nifHDK基因有杂交 .菌株总DNA经BamHⅠ酶切后与pEA9 DNA进行Southern杂交 ,只有 2株菌具有完整的质粒DNA ,其余菌株质粒DNA发生了 15 3~ 137 7kb不同程度的缺失 .用切割位点较少的限制性内切酶XbaⅠ酶切 6株菌的总DNA ,经脉冲场凝胶电泳 (PFGE)后用pEA9 DNA为探针进行Southern杂交 ,每株菌的pEA9 DNA明显大于用BamHⅠ酶切后的杂交结果 ,表明质粒与染色体发生了整合 .转座子Tn5或插入序列IS 12 2 2和IS 12 71可能参与质粒与染色体的整合过程 .  相似文献   

10.
An insertion sequence (here called IS 1031A) from Acetobacter xylinum ATCC 23769 has recently been isolated. This study describes the complete nucleotide sequence of IS 1031A as well as the sequences of two novel iso-IS 1031 elements, IS1031C and IS1031D, from A. xylinum ATCC 23769. The three ISs are all exactly 930 bp long, have imperfect terminal inverted repeats of 24 bp for IS1031A and 21 bp for IS1031C and IS1031D, are flanked by three base pair direct repeats, and contain an open reading frame encoding a putative basic protein of 278 amino acids. Because of nucleotide substitutions, IS1031C and IS1031D differ from IS 1031A by 12.9% while IS1031C differs from IS1031D by only 0.6%. Hybridization analyses of total DNA from nine A. xylinum strains showed that all strains contained IS 1031-like elements varying in copy number from three to at least 16. None of three Acetobacter aceti strains examined contained IS1031-like elements. Taken together, the results suggest that A. xylinum contains a family of IS 1031 elements with considerably diversified nucleotide sequences.  相似文献   

11.
In this study we developed eight quantitative PCR (qPCR) assays to evaluate the starting copy number of nuclear and mitochondrial DNA fragments ranging from 75 to 350 base-pairs in DNA extracts from Chinook salmon tissues with varying quality. Samples were genotyped with 13 microsatellite and 29 SNP assays and average genotyping success for good, intermediate, and poor quality samples was 96%, 24%, and 24% for microsatellite loci, and 98%, 97%, and 79% for SNPs, respectively. As measured by qPCR, good quality samples had a consistently high number of starting copies across all fragment sizes with little change between the smallest and largest size. In contrast, the intermediate and poor quality samples displayed decreases in starting copy number as fragment size increased, and was most pronounced with poor samples. Logistic regression of genotyping success by starting copy number indicated that in order to achieve at least 90% genotyping success, approximately 1,000 starting copies of nuclear DNA are necessary for microsatellite loci, and as few as 14 starting copies for SNP assays (but we recommend at least 50 copies to reduce genotyping error). While these guidelines apply specifically to Chinook salmon and the genetic markers included in this study, the principles are transferable to other species and markers due to the underlying process associated with template quantity and PCR amplification.  相似文献   

12.
J L Steele  L L McKay 《Plasmid》1989,22(1):32-43
Conjugal transfer of genetic material by Lactococcus lactis subsp. lactis 11007 was examined. A plasmid of 88 MDa (pJS88) was identified in addition to the previously reported conjugally transferred plasmids of 32 (pKB32) and 4.8 MDa. Proteinase activity, reduced bacteriophage sensitivity, bacteriocin resistance, and conjugal transfer ability were encoded by pJS88. The ability to metabolize lactose (Lac+) was encoded by pKB32, and the 4.8-MDa plasmid was cryptic. When a strain containing both pKB32 and pJS88 was mated with a recipient deficient in host-mediated homologous recombination (Rec-), a plasmid of 40 MDa (pJS40) was observed in approximately 50% of the Lac+ transconjugants. DNA-DNA hybridization results indicated that pJS40 contained homology with both pKB32 and pJS88. These results indicated that pKB32 was conjugally transferred via conduction and suggested that pJS40 is a deletion derivative of a pKB32::pJS88 cointegrate. A Rec- strain containing pKB32 and pJS88 mediated Lac+ conjugal transfer, suggesting that the pKB32::pJS88 cointegrate could form via a rec-independent event. Resolution of the pKB32::pJS88 cointegrate was observed in both Rec- and Rec+ hosts. Cointegrate formation and resolution via rec-independent mechanisms suggest the involvement of a transposable element in the Tn3 family.  相似文献   

13.
The possible implication of copy number variation (CNV) in the genetic susceptibility to human disease needs to be assessed using robust methods that can be applied at a population scale. In this report, we analyze the performance of the two major techniques, quantitative PCR (qPCR) and paralog ratio test (PRT), and investigate the influence of input DNA amount and template integrity on the reliability of both methods. Analysis of three genes (PRELID1, SYNPO and DEFB4) in a large sample set showed that both methods are prone to false copy number assignments if sufficient attention is not paid to DNA concentration and quality. Accurate normalization of samples is essential for reproducible qPCR because it avoids the effect of differential amplification efficiencies between target and control assays, whereas PRT is generally more sensitive to template degradation due to the fact that longer amplicons are usually needed to optimize sensitivity and specificity of paralog sequence PCR. The use of normalized, high quality genomic DNA yields comparable results with both methods.  相似文献   

14.
Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL‐)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T‐DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL‐PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T‐DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T‐DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided.  相似文献   

15.
A reference collection of 71 natural isolates of Escherichia coli (the ECOR collection) has been studied with respect to the distribution and abundance of transposable insertion sequences using DNA hybridization. The data include 1173 occurrences of six unrelated insertion sequences (IS1, IS2, IS3, IS4, IS5 and IS30). The number of insertion elements per strain, and the sizes of DNA restriction fragments containing them, is highly variable and can be used to discriminate even among closely related strains. The occurrence and abundance of pairs of unrelated insertion sequences are apparently statistically independent, but significant correlations result from stratifications in the reference collection. However, there is a highly significant positive association among the insertion sequences considered in the aggregate. Nine branching process models, which differ in assumptions regarding the regulation of transposition and the effect of copy number on fitness, have been evaluated with regard to their fit of the observed distributions. No single model fits all copy number distributions. The best models incorporate no regulation of transposition and a moderate to strong decrease in fitness with increasing copy number for IS1 and IS5, strong regulation of transposition and a negligible to weak decrease in fitness with increasing copy number for IS3, and less than strong regulation of transposition for IS2, IS4 and IS30.  相似文献   

16.

Introduction

Colorectal cancer (CRC) tumor DNA is characterized by chromosomal damage termed chromosomal instability (CIN) and excessively shortened telomeres. Up to 80% of CRC is microsatellite stable (MSS) and is historically considered to be chromosomally unstable (CIN+). However, tumor phenotyping depicts some MSS CRC with little or no genetic changes, thus being chromosomally stable (CIN-). MSS CIN- tumors have not been assessed for telomere attrition.

Experimental Design

MSS rectal cancers from patients ≤50 years old with Stage II (B2 or higher) or Stage III disease were assessed for CIN, telomere length and telomere maintenance mechanism (telomerase activation [TA]; alternative lengthening of telomeres [ALT]). Relative telomere length was measured by qPCR in somatic epithelial and cancer DNA. TA was measured with the TRAPeze assay, and tumors were evaluated for the presence of C-circles indicative of ALT. p53 mutation status was assessed in all available samples. DNA copy number changes were evaluated with Spectral Genomics aCGH.

Results

Tumors were classified as chromosomally stable (CIN-) and chromosomally instable (CIN+) by degree of DNA copy number changes. CIN- tumors (35%; n=6) had fewer copy number changes (<17% of their clones with DNA copy number changes) than CIN+ tumors (65%; n=13) which had high levels of copy number changes in 20% to 49% of clones. Telomere lengths were longer in CIN- compared to CIN+ tumors (p=0.0066) and in those in which telomerase was not activated (p=0.004). Tumors exhibiting activation of telomerase had shorter tumor telomeres (p=0.0040); and tended to be CIN+ (p=0.0949).

Conclusions

MSS rectal cancer appears to represent a heterogeneous group of tumors that may be categorized both on the basis of CIN status and telomere maintenance mechanism. MSS CIN- rectal cancers appear to have longer telomeres than those of MSS CIN+ rectal cancers and to utilize ALT rather than activation of telomerase.  相似文献   

17.
18.
The recent availability of several archaeal genome sequences has provided a basis for detailed analyses of the frequency, location and phylogeny of archaeal mobile elements. All the known elements fall into two main types, autonomous insertion sequence (IS) elements and the non-autonomous miniature inverted repeat element (MITE)-like elements. Both classes are considered to be mobilized via transposases that are encoded by the IS elements, although mobility has only been demonstrated experimentally for a few elements. The number, and diversity, of the elements differs greatly between the genomes. At one extreme Sulfolobus solfataricus P2 and Halobacterium NRC-1 are very rich in elements while Methanobacterium thermoautotrophicum contains none. The former also show examples of complex clusters of interwoven elements. An analysis of the genomic distribution in S. solfataricus suggests that the putative oriC and terC regions act as barriers for the mobility of both IS and MITE-like elements. Moreover, the very high level of truncated IS elements in the genomes of S. solfataricus, Sulfolobus tokodaii and Thermoplasma volcanium suggests that there may be a cellular mechanism for selectively inactivating IS elements at a point when they become too numerous and disadvantageous for the cell. Phylogenetically, archaeal IS elements are confined to 11 of the 17 known families of bacterial and eukaryal IS elements where some generate distinct subgroups. Finally, DNA viruses, plasmids and DNA fragments can also be inserted into, and excised from, archaeal genomes by means of an integrase-mediated mechanism that has special archaeal characteristics.  相似文献   

19.
Quantitative real-time PCR (qPCR) has been widely used in recent environmental microbial ecology studies as a tool for detecting and quantifying microorganisms of interest, which aids in better understandings of the complexity of wastewater microbial communities. Although qPCR can be used to provide more specific and accurate quantification than other molecular techniques, it does have limitations that must be considered when applying it in practice. This article reviews the principle of qPCR quantification and its applications to microbial ecology studies in various wastewater treatment environments. Here we also address several limitations of qPCR-based approaches that can affect the validity of quantification data: template nucleic acid quality, nucleic acid extraction efficiency, specificity of group-specific primers and probes, amplification of nonviable DNA, gene copy number variation, and limited number of sequences in the database. Even with such limitations, qPCR is reportedly among the best methods for quantitatively investigating environmental microbial communities. The application of qPCR is and will continue to be increasingly common in studies of wastewater treatment systems. To obtain reliable analyses, however, the limitations that have often been overlooked must be carefully considered when interpreting the results.  相似文献   

20.
在紫云英根瘤菌(Rhizobium astragali)的基因组中存在有DNA重复顺序(RSRa)。它在Ra159的基因组中重复4~5次,其中一个拷贝位于nifH基因的上游。以1.25kbPvul片段作探针,在其他紫云英根瘤菌菌株及豌豆根瘤菌RI PRE中也都检测到与RSRa同源的DNA片段。序列测定的结果表明RSRa其结构类似于IS因子,具有原核插入顺序的一些特点。RSRa全长1468bp,在RSRa的两个末端具有反向重复顺序,RSRa中有一个大的开放阅读框架(ORF)。由ORF推定的蛋白与大肠杆菌插入顺序IS903推定的转座酶有较高的同源性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号