首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Computer-assisted analysis of the amino acid sequence of the product encoded by the sequenced 3' portion of the cricket paralysis virus (CrPV), an insect picornavirus, genome showed that this protein is homologous not to the RNA-directed RNA polymerases, as originally suggested, but to the capsid proteins of mammalian picornaviruses. Alignment of the CrPV protein sequence with those of picornavirus and calicivirus capsid proteins demonstrated that the sequenced portion of the insect picornavirus genome encodes the C-terminal part of VP3 and the entire VP1. Thus CrPV seems to have a genome organization distinct from that of other picornaviruses but closely resembling that of caliciviruses, with the capsid proteins encoded in the 3' part of the genome. On the other hand, the tentative phylogenetic trees generated from the VP3 alignment revealed grouping of CrPV with hepatitis A virus, a true picornavirus, not with caliciviruses. Thus CrPV may be a picornavirus with a calicivirus-like genome organization. Different options for CrPV genome expression are discussed.  相似文献   

2.
Upon attachment to susceptible cells, poliovirus and a number of other picornaviruses undergo conformational transitions which result in changes in antigenicity, increased protease sensitivity, the loss of the internal capsid protein VP4, and a loss of the ability to attach to cells. These conformationally altered particles have been characterized by using a number of sequence-specific probes, including two proteases, a panel of antiviral monoclonal antibodies, and a panel of antisera against synthetic peptides which correspond to sequences from the capsid protein VP1. With these probes, cell-altered virus is clearly distinguishable from native and heat-inactivated virions. The probes also demonstrate that the cell-induced conformational change alters the accessibility of several regions of the virus. In particular, the amino terminus of VP1, which is entirely internal in the native virion, becomes externalized. Unlike native and heat-inactivated virus, cell-altered virions are able to attach to liposomes. The exposed amino terminus of VP1 is shown to be responsible for liposome attachment. We propose that during infection the amino terminus of VP1 inserts into endosomal membranes and thus plays a role in the mechanism of cell entry.  相似文献   

3.
We have compared the sequence of the capsid polypeptide of the Saccharomyces cerevisiae double-stranded RNA virus, ScV, with those of the picornaviruses. A central region of 245 amino acids in the ScV capsid polypeptide of 680 amino acids has significant similarity to the picornavirus VP3. This similarity is more extensive than that already noted for the alphavirus capsid polypeptide and the picornavirus VP3 (Fuller, S.D. and Argos, P, EMBO J. 6, 1099, 1987). Together with the similarity between the ScV RNA polymerase and the picornavirus RNA polymerases, this result implies an evolutionary relationship between a simple double-stranded RNA virus of fungi and the small plus strand RNA animal viruses.  相似文献   

4.
Some strains of enterovirus 71 (EV71), but not others, infect leukocytes by binding to a specific receptor molecule: the P-selectin glycoprotein ligand-1 (PSGL-1). We find that a single amino acid residue within the capsid protein VP1 determines whether EV71 binds to PSGL-1. Examination of capsid sequences of representative EV71 strains revealed that the PSGL-1-binding viruses had either a G or a Q at residue 145 within the capsid protein VP1 (VP1-145G or Q), whereas PSGL-1-nonbinding viruses had VP1-145E. Using site-directed mutagenesis we found that PSGL-1-binding strains lost their capacity to bind when VP1-145G/Q was replaced by E; conversely, nonbinding strains gained the capacity to bind PSGL-1 when VP1-145E was replaced with either G or Q. Viruses with G/Q at VP1-145 productively infected a leukocyte cell line, Jurkat T-cells, whereas viruses with E at this position did not. We previously reported that EV71 binds to the N-terminal region of PSGL-1, and that binding depends on sulfated tyrosine residues within this region. We speculated that binding depends on interaction between negatively charged sulfate groups and positively charged basic residues in the virus capsid. VP1-145 on the virus surface is in close proximity to conserved lysine residues at VP1-242 and VP1-244. Comparison of recently published crystal structures of EV71 isolates with either Q or E at VP1-145 revealed that VP1-145 controls the orientation of the lysine side-chain of VP1-244: with VP1-145Q the lysine side chain faces outward, but with VP1-145E, the lysine side chain is turned toward the virus surface. Mutation of VP1-244 abolished virus binding to PSGL-1, and mutation of VP1-242 greatly reduced binding. We propose that conserved lysine residues on the virus surface are responsible for interaction with sulfated tyrosine residues at the PSGL-1 N-terminus, and that VP1-145 acts as a switch, controlling PSGL-1 binding by modulating the exposure of VP1-244K.  相似文献   

5.
Empty capsids of foot-and-mouth disease virus (FMDV) type A22 Iraq 24/64, whose structure has been solved by X-ray crystallography, are unusual for picornaviruses since they contain VP2 and VP4, the cleavage products of the protein precursor VP0. Both the N terminus of VP1 and the C terminus of VP4, which pack together close to the icosahedral threefold symmetry axis where three pentamers associate, are more disordered in the empty capsid than they are in the RNA-containing virus. The ordering of these termini in the presence of RNA strengthens interactions within a single protomer and between protomers belonging to different pentamers. The disorder in the FMDV empty capsid forms a subset of that seen in the poliovirus empty capsid, which has VP0 intact. Thus, VP0 cleavage confers stability on the picornavirus capsid over and above that attributable to RNA encapsidation. In both FMDV and poliovirus empty capsids, the internal disordering uncovers a conserved histidine which has been proposed to be involved in the cleavage of VP0. A comparison of the putative active sites in FMDV and poliovirus suggests a structural explanation for the sequence specificity of the cleavage reaction.  相似文献   

6.
The foot-and-mouth disease virus (FMDV) capsid is highly acid labile, but introduction of amino acid replacements, including an N17D change in VP1, can increase its acid resistance. Using mutant VP1 N17D as a starting point, we isolated a virus with higher acid resistance carrying an additional replacement, VP2 H145Y, in a residue highly conserved among picornaviruses, which has been proposed to be responsible for VP0 cleavage. This mutant provides an example of the multifunctionality of picornavirus capsid residues.  相似文献   

7.
The complete genomic sequence of Duck hepatitis virus 1 (DHV-1) ZJ-V isolate was sequenced and determined to be 7 691 nucleotides (nt) in length with a 5'-terminal un-translated region (UTR) of 626 nt and a 3'-terminal UTR of 315 nt (not including the poly(A) tail). One large open reading frame (ORF) was found within the genome (nt 627 to 7 373) coding for a polypeptide of 2 249amino acids. Our data also showed that the poly (A) tail of DHV-1 has at least 22 A's. Sequence comparison revealed significant homology (from 91.9% to 95.7%) between the protein sequences of the virus in the Picornaviridae family, its genome showed some unique characteristics. DHV-1 contains 3copies of the 2A gene and only 1 copy of the 3B gene, and its 3'-NCR is longer than those of other picornaviruses. Phylogenetic analysis to do sequence homology based on the VP1 protein sequences showed that the ZJ-V isolate shares high sequence homology with the reported DHV-1 isolates (from 92.9% to 99.2%), indicating that DHV-1 is genetically stable.  相似文献   

8.
Complete Genomic Sequence of a Chinese Isolate of Duck Hepatitis Virus   总被引:1,自引:0,他引:1  
The complete genomic sequence of Duck hepatitis virus 1(DHV-1) ZJ-V isolate was sequenced and determined to be 7 691 nucleotides(nt) in length with a 5'-terminal un-translated region(UTR) of 626 nt and a 3'-terminal UTR of 315 nt(not including the poly(A) tail).One large open reading frame(ORF) was found within the genome(nt 627 to 7 373) coding for a polypeptide of 2 249 amino acids.Our data also showed that the poly(A) tail of DHV-1 has at least 22 A's.Sequence comparison revealed significant homology(from 91.9% to 95.7%) between the protein sequences of the ZJ-V isolate and those of 21 reference isolates.Although DHV-1 has been classified as an unassigned virus in the Picornaviridae family,its genome showed some unique characteristics.DHV-1 contains 3 copies of the 2A gene and only 1 copy of the 3B gene,and its 3'-NCR is longer than those of other picornaviruses.Phylogenetic analysis to do sequence homology based on the VP1 protein sequences showed that the ZJ-V isolate shares high sequence homology with the reported DHV-1 isolates(from 92.9% to 99.2%),indicating that DHV-1 is genetically stable.  相似文献   

9.
Cleavage sites within the poliovirus capsid protein precursors.   总被引:15,自引:11,他引:4       下载免费PDF全文
Partial amino-terminal sequence analysis was performed on radiolabeled polio-virus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein.  相似文献   

10.
The unique N-terminal region of the parvovirus VP1 capsid protein is required for infectivity by the capsids but is not required for capsid assembly. The VP1 N terminus contains a number of groups of basic amino acids which resemble classical nuclear localization sequences, including a conserved sequence near the N terminus comprised of four basic amino acids, which in a peptide can act to transport other proteins into the cell nucleus. Testing with a monoclonal antibody recognizing residues 2 to 13 of VP1 (anti-VP1-2-13) and with a rabbit polyclonal serum against the entire VP1 unique region showed that the VP1 unique region was not exposed on purified capsids but that it became exposed after treatment of the capsids with heat (55 to 75 degrees C), or urea (3 to 5 M). A high concentration of anti-VP1-2-13 neutralized canine parvovirus (CPV) when it was incubated with the virus prior to inoculation of cells. Both antibodies blocked infection when injected into cells prior to virus inoculation, but neither prevented infection by coinjected infectious plasmid DNA. The VP1 unique region could be detected 4 and 8 h after the virus capsids were injected into cells, and that sequence exposure appeared to be correlated with nuclear transport of the capsids. To examine the role of the VP1 N terminus in infection, we altered that sequence in CPV, and some of those changes made the capsids inefficient at cell infection.  相似文献   

11.
Segment 5 of bluetongue virus (BTV) serotype 10, which encodes the outer capsid protein VP5, was tagged with glutathione S-transferase and expressed by a recombinant baculovirus. The recombinant protein was subsequently purified to homogeneity, and its possible biological role in virus infection was investigated. Purified VP5 was able to bind mammalian cells but was not internalized, which indicates it is not involved in receptor-mediated endocytosis. The purified VP5 protein was shown to be able to permeabilize mammalian and Culicoides insect cells, inducing cytotoxicity. Sequence analysis revealed that VP5 possesses characteristic structural features (including two amino-terminal amphipathic helices) compatible with virus penetration activity. To assess the role of each feature in the observed cytotoxicity, a series of deleted VP5 molecules were generated, and their expression and biological activity was compared with the parental molecule. VP5 derivatives that included the two amphipathic helices exhibited cytotoxicity, while those that omitted these sequences did not. To confirm their role in membrane destabilization two synthetic peptides (amino acids [aa] 1 to 20 and aa 22 to 41) encompassing the two helices and an additional peptide representing the adjacent downstream sequences were also assessed for their effect on the cell membrane. Both helices, but not the downstream VP5 sequence, exhibited cytotoxicity with the most-amino-terminal helix (aa 1 to 20) showing a higher activity than the adjacent peptide (aa 22 to 41). Purified VP5 was shown to readily form trimers in solution, a feature of many proteins involved in membrane penetration. Taken together, these data support a role for VP5 in virus-cell penetration consistent with its revelation in the entry vesicle subsequent to cell binding and endocytosis.  相似文献   

12.
We have used X-ray crystallography to determine the structure of a decay accelerating factor (DAF)-binding, clinic-derived isolate of echovirus 11 (EV11-207). The structures of the capsid proteins closely resemble those of capsid proteins of other picornaviruses. The structure allows us to interpret a series of amino acid changes produced by passaging EV11-207 in different cell lines as highlighting the locations of multiple receptor-binding sites on the virion surface. We suggest that a DAF-binding site is located at the fivefold axes of the virion, while the binding site for a distinct but as yet unidentified receptor is located within the canyon surrounding the virion fivefold axes.  相似文献   

13.
Intracerebral inoculation of mice with poliovirus type 2 Lansing induces a fatal paralysis, while most other poliovirus strains are unable to cause disease in the mouse. To determine the molecular basis for Lansing virus neurovirulence, we determined the complete nucleotide sequence of the Lansing viral genome from cloned cDNA. The deduced amino acid sequence was compared with that of two mouse-avirulent strains. There are 83 amino acid differences between the Lansing and Sabin type 2 strain and 179 differences between the Lansing and Mahoney type 1 strain scattered throughout the genome. To further localize Lansing sequences important for mouse neurovirulence, four intertypic recombinants were isolated by exchanging DNA restriction fragments between the Lansing 2 and Mahoney 1 infectious poliovirus cDNA clones. Plasmids were transfected into HeLa cells, and infectious recombinant viruses were recovered. All four recombinant viruses, which contained the Lansing capsid region and different amounts of the Mahoney genome, were neurovirulent for 18- to 21-day-old Swiss-Webster mice by the intracerebral route. The genome of neurovirulent recombinant PRV5.1 contained only nucleotides 631 to 3413 from Lansing, encoding primarily the viral capsid proteins. Therefore, the ability of Lansing virus to cause paralysis in mice is due to the viral capsid. The Lansing capsid sequence differs from that of the mouse avirulent Sabin 2 strain at 32 of 879 amino acid positions: 1 in VP4, 5 in VP2, 4 in VP3, and 22 in VP1.  相似文献   

14.
In this study, we identified a region in the human parvovirus structural protein which involves the neutralization of the virus by a monoclonal antibody and site-specific synthetic peptides. A newly established monoclonal antibody reacted with both viral capsid proteins VP1 and VP2. The epitope was found in six strains of independently isolated human parvovirus B19. The monoclonal antibody could protect colony-forming unit erythroid in human bone marrow cell culture from injury by the virus. The monoclonal antibody reacted with only 1 of 12 peptides that were synthesized according to a predicted amino acid sequence based on nucleotide sequences of the coding region for the structural protein of B19 virus. The sequence recognized by the antibody was a site corresponding to amino acids 328 to 344 from the amino-terminal portion of VP2. This evidence suggests that the epitope of the viral capsid protein is located on the surface of the virus and may be recognized by virus-neutralizing antibodies.  相似文献   

15.
Viral B capsids were purified from cells infected with herpes simplex virus type 1 and extracted in vitro with 2.0 M guanidine hydrochloride (GuHCl). Sodium dodecyl sulfate-polyacrylamide gel analyses demonstrated that extraction resulted in the removal of greater than 95% of capsid proteins VP22a and VP26 while there was only minimal (less than 10%) loss of VP5 (the major capsid protein), VP19, and VP23. Electron microscopic analysis of extracted capsids revealed that the pentons and the material found inside the cavity of B capsids (primarily VP22a) were removed nearly quantitatively, but extracted capsids remained otherwise structurally intact. Few, if any, hexons were lost; the capsid diameter was not greatly affected; and its icosahedral symmetry was still clearly evident. The results demonstrate that neither VP19 nor VP23 could constitute the capsid pentons. Like the hexons, the pentons are most likely composed of VP5. When B capsids were treated with 2.0 M GuHCl and then dialyzed to remove GuHCl, two bands of viral material were separated by sucrose density gradient ultracentrifugation. The more rapidly migrating of the two consisted of capsids which lacked pentons and VP22a but had a full complement of VP26. Thus, VP26 must have reassociated with extracted capsids during dialysis. The more slowly migrating band consisted of torus-shaped structures approximately 60 nm in diameter which were composed entirely of VP22a. These latter structures closely resembled torus-shaped condensates often seen in the cavity of native B capsids. The results suggest a similarity between herpes simplex virus type 1 B capsids and procapsids of Salmonella bacteriophage P22. Both contain an internal protein (VP22a in the case of HSV-1 B capsids and gp8 or "scaffolding" protein in phage P22) that can be extracted in vitro with GuHCl and that is absent from mature virions.  相似文献   

16.
The DA strain of Theiler's virus persists in the central nervous system of mice and causes chronic inflammation and demyelination. On the other hand, the GDVII strain causes an acute encephalitis and does not persist in surviving animals. Series of recombinants between infectious cDNA clones of the genomes of DA and GDVII viruses have been constructed. The analysis of the phenotypes of the recombinant viruses has shown that determinants of persistence and demyelination are present in the capsid proteins of DA virus. Chimeric viruses constructed by the different research groups gave consistent results, with one exception. Chimeras GD1B-2A/DAFL3 and GD1B-2C/DAFL3, which contain part of capsid protein VP2, capsid proteins VP3 and VP1, and different portions of P2 of GDVII in a DA background, were able to persist and cause demyelination. Chimera R4, whose genetic map is identical to that of GD1B-2A/DAFL3, was not. After exchanging the viral chimeras between laboratories and verifying each other's observations, new chimeras were generated in order to explain this difference. Here we report that the discrepancy can be attributed to a single amino acid difference in the sequence of the capsid protein VP2 of the two parental DA strains. DAFL3 (University of Chicago) and the chimeras derived from it, GD1B-2A/DAFL3 and GD1B-2C/DAFL3, contain a Lys at position 141, while TMDA (Institut Pasteur) and R4, the chimera derived from it, contain an Asn in that position. This amino acid is located at the tip of the EF loop, on the rim of the depression spanning the twofold axis of the capsid. These results show that a single amino acid change can confer the ability to persist and demyelinate to a chimeric Theiler's virus, and they pinpoint a region of the viral capsid that is important for this phenotype.  相似文献   

17.
《Seminars in Virology》1993,4(5):285-295
Several unique features of hepatitis A virus (HAV) support its classification within a new genus, hepatovirus, of the family Picornaviridae. The structure of the HAV capsid may differ from other picornaviruses as indirect evidence suggests the absence of a myristylated VP4 protein. The replication of HAV is unusually slow in cell culture and typically results in persistent infection. Other evidence suggests fundamental differences between HAV and other picornaviruses with respect to viral translation, polyprotein processing and RNA replication.  相似文献   

18.
The VP1 capsid protein of foot and mouth disease virus (FMDV) is highly polymorphic and contains several of the major immunogenic sites important to effective antibody neutralization and subsequent viral clearance by the immune system. Whether this high level of polymorphism is of adaptive value to the virus remains unknown. In this study we examined sequence data from a set of 55 isolates in order to establish the nature of selective pressures acting on this gene. Using the known molecular structure of VP1, the rates and ratios of different types of nonsynonymous and synonymous changes were compared between different parts of the protein. All parts of the protein are subject to purifying selection, but this is greatest amongst those amino acid residues within β-strands and is significantly reduced at residues exposed on the capsid surface, which include those residues demonstrated by previous mutational analyses to permit the virus to escape from monoclonal antibody binding. The ratios of nonsynonymous substitution resulting in various forms of physicochemically radical and conserved amino acid change were shown to be largely equal throughout these different parts of the protein. There was a consistently higher level of nonsynonymous and charge radical sites in those regions of the gene coding for residues exposed on the outer surface of the capsid and a marked difference in the use of amino acids between surface and nonsurface regions of the protein. However, the analysis is consistent with the hypothesis that the observed sequence variation arises where it is least likely to be disruptive to the higher-order structure of the protein and is not necessarily due to positive Darwinian selection. Received: 8 March 1997 / Accepted: 12 August 1997  相似文献   

19.
Ljungan virus (LV) is a suspected human pathogen recently isolated from bank voles (Clethrionomys glareolus). In the present study, it is revealed through comparative sequence analysis that three newly determined Swedish LV genomes are closely related and possess a deviant picornavirus-like organization: 5' untranslated region-VP0-VP3-VP1-2A1-2A2-2B-2C-3A-3B-3C-3D-3' untranslated region. The LV genomes and the polyproteins encoded by them exhibit several exceptional features, such as the absence of a predicted maturation cleavage of VP0, a conserved sequence determinant in VP0 that is typically found in VP1 of other picornaviruses, and a cluster of two unrelated 2A proteins. The 2A1 protein is related to the 2A protein of cardio-, erbo-, tescho-, and aphthoviruses, and the 2A2 protein is related to the 2A protein of parechoviruses, kobuviruses, and avian encephalomyelitis virus. The unprecedented association of two structurally different 2A proteins is a feature never previously observed among picornaviruses and implies that their functions are not mutually exclusive. Secondary polyprotein processing of the LV polyprotein is mediated by proteinase 3C (3C(pro)) possessing canonical affinity to Glu and Gln at the P1 position and small amino acid residues at the P1' position. In addition, LV 3C(pro) appears to have unique substrate specificity to Asn, Gln, and Asp and to bulky hydrophobic residues at the P2 and P4 positions, respectively. Phylogenetic analysis suggests that LVs form a separate division, which, together with the Parechovirus genus, has branched off the picornavirus tree most closely to its root. The presence of two 2A proteins indicates that some contemporary picornaviruses with a single 2A may have evolved from the ancestral multi-2A picornavirus.  相似文献   

20.
Two plaque morphology variants of polyoma virus (A-2 and 208) showed marked differences in agarose gel electrophoresis of the whole particles, isoelectric focusing of the major capsid protein VP1 (45,000 daltons) and three tryptic peptides (A, B and C) of VP1. No major difference in apparent molecular weight on NaDodSO4 gels, amino acid composition or carbohydrate detectable by Schiff staining was revealed between the capsid proteins of the two viruses.Correlations have been made between phenotype, portions of the primary amino acid sequence of VP1 and the physical map of polyoma virus DNA by analysis of this protein from large plaque A-2 virus, minute plaque 208 virus and large plaque 208 virus selected after marker rescue with a fragment of polyoma virus DNA generated by the Hpa II restriction enzyme. The interrelationship of these properties was established by taking advantage of the observations of Miller, Cooke and Fried (1976)that heterozygous markers present on heteroduplex DNA are found in 100% of selected progeny and in only 50% of unselected progeny.All five marker rescued isolates selected for large plaque morphology showed only two A-2-specific characters, the absence of peptide C in tryptic maps of VP1 and the aggregation of VP1 on isoelectric focusing. The other four characters which distinguish A-2 and 208 were present or absent in 40–60% of the five isolates, which is close to the expected 50% for unselected markers. Three of the four A-2-specific characters (the presence of peptide A, absence of peptide B and isoelectric point of VP1) have been found to occur coordinately in the marker rescued isolates. The fourth character (electrophoretic mobility of virus particles in agarose gels) segregated independently.The techniques used in this study should find wide application in correlating primary amino acid sequence, nucleotide sequence and phenotype in other systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号