首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The completion of the genome sequence of Trypanosoma cruzi has been followed by several studies of protein expression, with the long-term aim to obtain a complete picture of the parasite proteome. We report a proteomic analysis of an organellar cell fraction from T. cruzi CL Brener epimastigotes. A total of 396 proteins were identified by LC-MS/MS. Of these, 138 were annotated as hypothetical in the genome databases and the rest could be assigned to several metabolic and biosynthetic pathways, transport, and structural functions. Comparative analysis with a whole cell proteome study resulted in the validation of the expression of 173 additional proteins. Of these, 38 proteins previously reported in other stages were not found in the only large-scale study of the total epimastigote stage proteome. A selected set of identified proteins was analyzed further to investigate gene copy number, sequence variation, transmembrane domains, and targeting signals. The genes were cloned and the proteins expressed with a c-myc epitope tag in T. cruzi epimastigotes. Immunofluorescence microscopy revealed the localization of these proteins in different cellular compartments such as ER, acidocalcisome, mitochondrion, and putative cytoplasmic transport or delivery vesicles. The results demonstrate that the use of enriched subcellular fractions allows the detection of T. cruzi proteins that are undetected by whole cell proteomic methods.  相似文献   

2.
3.
DNA replication mechanisms are poorly understood in most of trypanosomatids, in particular the replication of the peculiar mitochondrial DNA, the kinetoplast DNA (kDNA). To contribute to the knowledge on the mechanism of kDNA replication in Trypanosoma cruzi, we have previously characterized the Universal Minicircle Sequence Binding Protein of this parasite (TcUMSBP), which was first called PDZ5 [E.R. Coelho, T.P. Urmenyi, J. Franco da Silveira, E. Rondinelli, R. Silva, Identification of PDZ5, a candidate universal minicircle sequence binding protein of Trypanosoma cruzi, Int. J. Parasitol. 33 (2003) 853-858]. In this work, we describe two highly polymorphic alleles of the TcUMSBP locus in the T. cruzi reference clone CL Brener and the differential expression pattern of these alleles. A 62 bp sequence in the TcUMSBP upstream intergenic region in one of its alleles affects the efficiency of polycistronic RNA processing and the polyadenylation sites, and therefore regulates the differential expression of TcUMSBP alleles of this locus.  相似文献   

4.
During the acute phase of infection, T. cruzi replicates extensively and releases immunomodulatory molecules that delay parasite-specific responses mediated by effector T cells. This mechanism of evasion allows the parasite to spread in the host. Parasite molecules that regulate the host immune response during Chagas'disease have not been fully identified. GPI-anchored mucins, glycoinositolphospholipids, and glycoproteins comprise some of the most abundant T. cruzi surface molecules. IL-10 IFN-γ-secreting CD4+ T cells are activated during chronic infections and are responsible for prolonged persistence of parasite and for host protection against severe inflammatory responses. In this work we evaluated the role of rMBP::SSP4 protein of T. cruzi, a recombinant protein derived from a GPI anchored antigen, SSP4, as an immunomodulator molecule, finding that it was able to induce high concentrations of IL-10 and IFN-γ both in vivo and in vitro; during this last condition, both cytokines were produced by IL-10-IFN-γ-secreting CD4+ T cells.  相似文献   

5.
Coculture of blood forms of Trypanosoma cruzi with human PMBC suppresses the expression of several molecules involved in lymphocyte activation, including receptors for IL-2. Our work was initially undertaken to establish whether this effect required physical parasite-PBMC contact or was mediated by a T. cruzi secretion product. Using culture inserts with cell-impermeable membranes, we were able to demonstrate significant suppression of PHA-induced lymphoproliferation whether the trypanosomes were placed in the same compartment as, or separated from, the PBMC. Similar effects were observed by using supernatants from T. cruzi suspensions. These supernatants, which we refer to as trypanosomal immunosuppressive factor, also inhibited IL-2R expression in response to PHA stimulation. The suppressive effect of the secretion product(s) of T. cruzi was reversible, as evidenced by significant recovery of the proliferative capacity of PBMC after removal of the parasite-containing inserts. Moreover, the extent of the suppression produced by trypanosomal immunosuppressive factor subsided as culture time increased. Treatment of trypanosomal immunosuppressive factor with proteases abrogated its suppressive activity, suggesting that the relevant principle(s) was of protein nature. From ultrafiltration experiments, the molecular mass of the suppressive molecule(s) was estimated to be between 30,000 and 100,000 Da. These results demonstrate for the first time the capacity of T. cruzi to spontaneously secrete a factor that suppresses human lymphocyte responses in vitro. This factor, which may play a role in the down-regulation of host immune function observed in acute chagasic patients, might be a useful tool in exploring the mechanisms that regulate the expression of IL-2R and other surface molecules playing key roles in lymphocyte activation.  相似文献   

6.
7.
8.
Trypanosoma cruzi tryparedoxin 1 (TcTXN1) is an oxidoreductase belonging to the thioredoxin superfamily, which mediates electron transfer between trypanothione and peroxiredoxins. In trypanosomes TXNs, and not thioredoxins, constitute the oxido-reductases of peroxiredoxins. Since, to date, there is no information concerning TcTXN1 substrates in T. cruzi, the aim of this work was to characterize TcTXN1 in two aspects: expression throughout T. cruzi life cycle and subcellular localization; and the study of TcTXN1 interacting-proteins. We demonstrate that TcTXN1 is a cytosolic and constitutively expressed protein in T. cruzi. In order to start to unravel the redox interactome of T. cruzi we designed an active site mutant protein lacking the resolving cysteine, and validated the complex formation in vitro between the mutated TcTXN1 and a known partner, the cytosolic peroxiredoxin. Through the expression of this mutant protein in parasites with an additional 6xHis-tag, heterodisulfide complexes were isolated by affinity chromatography and identified by 2-DE/MS. This allowed us to identify fifteen TcTXN1 proteins which are involved in two main processes: oxidative metabolism and protein synthesis and degradation. Our approach led us to the discovery of several putatively TcTXN1-interacting proteins thereby contributing to our understanding of the redox interactome of T. cruzi.  相似文献   

9.
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.  相似文献   

10.
11.
12.
Analysis of gene function in Trypanosoma cruzi is limited due to the absence of rapid, simple and reversible genetic tools to regulate gene and corresponding protein expression. We have designed a modified pTREX vector which uses an N-terminal fusion of a ligand-controlled destabilisation domain (ddFKBP) to a gene/protein of interest. This vector allows rapid and reversible protein expression and efficient functional analysis of proteins in different T. cruzi life cycle stages.  相似文献   

13.
14.
An analysis of antibody recognition of Trypanosoma cruzi exoantigens by immunoblotting revealed a unique banding pattern that seems to be characteristic of each strain or isolate. Trypomastigote excreted-secreted antigens (TESA) present in supernatants of LLC-MK2 cells infected with 5 strains and 10 isolates of T. cruzi produced 13 different immunoblotting patterns. The same bands were observed when probed with acute-phase Chagas' disease serum or with serum from a rabbit immunized with the repetitive domain of T. cruzi transialidase recombinant protein (anti-shed acute-phase antigens). Three similar patterns were observed with TESA from 3 human isolates that probably belong to the same T. cruzi strain. When clone CL Brener, clone CL-14, and CL parental strain were analyzed, the same bands were observed, although they presented different biological behavior. These results suggest that immunoblotting analysis of TESA may be a useful tool for characterization of T. cruzi strains and isolates.  相似文献   

15.
Host-pathogen interactions result in protein expression changes within both the host and the pathogen. Here, results from proteomic characterization of host response following exposure to Yersinia pestis, the causative agent of plague, and to two near neighbors, Yersinia pseudotuberculosis and Yersinia enterocolitica, are reported. Human monocyte-like cells were chosen as a model for macrophage immune response to pathogen exposure. Two-dimensional electrophoresis followed by mass spectrometry was used to identify host proteins with differential expression following exposure to these three closely related Yersinia species. This comparative proteomic characterization of host response clearly shows that host protein expression patterns are distinct for the different pathogen exposures, and contributes to further understanding of Y. pestis virulence and host defense mechanisms. This work also lays the foundation for future studies aimed at defining biomarkers for presymptomatic detection of plague.  相似文献   

16.
Glucose is an essential substrate for Trypanosoma cruzi, the protozoan organism responsible for Chagas' disease. The glucose is intracellularly phosphorylated to glucose 6-phosphate. Previously, a hexokinase responsible for this phosphorylation has been characterized. Recently, we identified an ATP-dependent glucokinase in T. cruzi exhibiting a tenfold lower substrate affinity compared to the hexokinase. Both enzymes, which belong to very different groups of the same family, are located inside glycosomes, the peroxisome-like organelles of Kinetoplastida that are known to contain the first seven glycolytic steps as well as enzymes of the oxidative branch of the pentose phosphate pathway. Here, we present the crystallographic structure of T. cruzi glucokinase, in complex with glucose and ADP. The structure suggests a loose tetrameric assembly formed by the association of two tight dimers. TcGlcK was previously reported to exist in a concentration-dependent equilibrium of monomeric and dimeric states. Here, we used mass spectrometry analysis to confirm the existence of TcGlcK monomeric and dimeric states. The analysis of subunit interactions and comparison with the bacterial glucokinases give insights into the forces promoting the stability of the different oligomeric states. Each T. cruzi glucokinase monomer contains one glucose and one ADP molecule. In contrast to hexokinases, which show a moderate preference for the alpha anomer of glucose, the electron density clearly shows the d-glucose bound in the beta configuration in the T.cruzi glucokinase. Kinetic assays with alpha and beta-d-glucose further confirm a moderate preference of the T. cruzi glucokinase for the beta anomer. Structural comparison of the glucokinase and hexokinases permits the identification of a possible mechanism for anomer selectivity in these hexose-phosphorylating enzymes. The preference for distinct anomers suggests that in T. cruzi hexokinase and glucokinase are not directly competing for the same substrate and are probably both present because they exert distinct physiological functions.  相似文献   

17.
Differential display of mRNAs from Trypanosoma cruzi epimastigote and metacyclic trypomastigote stages showed several mRNA species differing in their expression level. The cDNA corresponding to one of these mRNAs was used as a probe in Northern blots and identified a RNA product of 2.6 kb with an expression level eight or more times higher in trypomastigotes than in epimastigotes. This probe was also used to screen a genomic library of T. cruzi CL Brener clone prepared in lambda FIX. A clone of about 15 kb was selected that, after partial sequencing, revealed an open reading frame of 688 amino acids encoding a deduced protein with similarity to RNA helicases of the DEAD-box gene family. The presence of the eight conserved motifs characteristic of the DEAD protein family was observed in the T. cruzi sequence, indicating that it corresponds to a putative RNA helicase gene, which we named HelTc. Southern blot analysis indicated that HelTc is a single-copy gene. Pulsed-field gel electrophoresis separation of chromosomes of several isolates of T. cruzi showed that this gene was localized in one or two chromosomal bands.  相似文献   

18.
A role for parasite genetic variability in the spectrum of Chagas disease is emerging but not yet evident, in part due to an incomplete understanding of the population structure of Trypanosoma cruzi. To investigate further the observed genotypic variation at the sequence and chromosomal levels in strains of standard and field-isolated T. cruzi we have undertaken a comparative analysis of 10 regions of the genome from two isolates representing T. cruzi I (Dm28c and Silvio X10) and two from T. cruzi II (CL Brener and Esmeraldo). Amplified regions contained intergenic (non-coding) sequences from tandemly repeated genes. Multiple nucleotide polymorphisms correlated with the T. cruzi I/T. cruzi II classification. Two intergenic regions had useful polymorphisms for the design of classification probes to test on genomic DNA from other known isolates. Two adjacent nucleotide polymorphisms in HSP 60 correlated with the T. cruzi I and T. cruzi II distinction. 1F8 nucleotide polymorphisms revealed multiple subdivisions of T. cruzi II: subgroups IIa and IIc displayed the T. cruzi I pattern; subgroups IId and IIe possessed both the I and II patterns. Furthermore, isolates from subgroups IId and IIe contained the 1F8 polymorphic markers on different chromosome bands supporting a genetic exchange event that resulted in chromosomes V and IX of T. cruzi strain CL Brener. Based on these analyses, T. cruzi I and subgroup IIb appear to be pure lines, while subgroups IIa/IIc and IId/IIe are hybrid lines. These data demonstrate for the first time that IIa/IIc are hybrid, consistent with the hypothesis that genetic recombination has occurred more than once within the T. cruzi lines.  相似文献   

19.
20.
Trypanosoma cruzi, the causative agent of Chagas disease, has at least two principal intraspecific subdivisions, T. cruzi I (TCI) and T. cruzi II (TCII), the latter containing up to five subgroups (a-e). Whilst it is known that TCI predominates from the Amazon basin northwards and TCII to the South, where the disease is considered to be clinically more severe, the precise clinical and evolutionary significance of these divisions remains enigmatic. Here, we present compelling evidence of an association between TCI and opossums (Didelphis), and TCII and armadillos, on the basis of key new findings from the Paraguayan Chaco region, together with a comprehensive analysis of historical data. We suggest that the distinct arboreal and terrestrial ecologies, respectively, of these mammal hosts provide a persuasive explanation for the extant T. cruzi intraspecific diversity in South America, and for separate origins of Chagas disease in northern South America and in the southern cone countries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号