首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The present study investigates how the CNS deals with the omnipresent force of gravity during arm motor planning. Previous studies have reported direction-dependent kinematic differences in the vertical plane; notably, acceleration duration was greater during a downward than an upward arm movement. Although the analysis of acceleration and deceleration phases has permitted to explore the integration of gravity force, further investigation is necessary to conclude whether feedforward or feedback control processes are at the origin of this incorporation. We considered that a more detailed analysis of the temporal features of vertical arm movements could provide additional information about gravity force integration into the motor planning. Eight subjects performed single joint vertical arm movements (45° rotation around the shoulder joint) in two opposite directions (upwards and downwards) and at three different speeds (slow, natural and fast). We calculated different parameters of hand acceleration profiles: movement duration (MD), duration to peak acceleration (D PA), duration from peak acceleration to peak velocity (D PA-PV), duration from peak velocity to peak deceleration (D PV-PD), duration from peak deceleration to the movement end (D PD-End), acceleration duration (AD), deceleration duration (DD), peak acceleration (PA), peak velocity (PV), and peak deceleration (PD). While movement durations and amplitudes were similar for upward and downward movements, the temporal structure of acceleration profiles differed between the two directions. More specifically, subjects performed upward movements faster than downward movements; these direction-dependent asymmetries appeared early in the movement (i.e., before PA) and lasted until the moment of PD. Additionally, PA and PV were greater for upward than downward movements. Movement speed also changed the temporal structure of acceleration profiles. The effect of speed and direction on the form of acceleration profiles is consistent with the premise that the CNS optimises motor commands with respect to both gravitational and inertial constraints.  相似文献   

2.
Autistic individuals typically excel on spatial tests that measure abstract reasoning, such as the Block Design subtest on intelligence test batteries and the Raven’s Progressive Matrices nonverbal test of intelligence. Such well-replicated findings suggest that abstract spatial processing is a relative and perhaps absolute strength of autistic individuals. However, previous studies have not systematically varied reasoning level – concrete vs. abstract – and test domain – spatial vs. numerical vs. verbal, which the current study did. Autistic participants (N = 72) and non-autistic participants (N = 72) completed a battery of 12 tests that varied by reasoning level (concrete vs. abstract) and domain (spatial vs. numerical vs. verbal). Autistic participants outperformed non-autistic participants on abstract spatial tests. Non-autistic participants did not outperform autistic participants on any of the three domains (spatial, numerical, and verbal) or at either of the two reasoning levels (concrete and abstract), suggesting similarity in abilities between autistic and non-autistic individuals, with abstract spatial reasoning as an autistic strength.  相似文献   

3.
Humans and animals time intervals from seconds to minutes with high accuracy but limited precision. Consequently, time-based decisions are inevitably subjected to our endogenous timing uncertainty, and thus require temporal risk assessment. In this study, we tested temporal risk assessment ability of humans when participants had to withhold each subsequent response for a minimum duration to earn reward and each response reset the trial time. Premature responses were not penalized in Experiment 1 but were penalized in Experiment 2. Participants tried to maximize reward within a fixed session time (over eight sessions) by pressing a key. No instructions were provided regarding the task rules/parameters. We evaluated empirical performance within the framework of optimality that was based on the level of endogenous timing uncertainty and the payoff structure. Participants nearly tracked the optimal target inter-response times (IRTs) that changed as a function of the level of timing uncertainty and maximized the reward rate in both experiments. Acquisition of optimal target IRT was rapid and abrupt without any further improvement or worsening. These results constitute an example of optimal temporal risk assessment performance in a task that required finding the optimal trade-off between the ‘speed’ (timing) and ‘accuracy’ (reward probability) of timed responses for reward maximization.  相似文献   

4.
While humans are capable of mentally transcending the here and now, this faculty for mental time travel (MTT) is dependent upon an underlying cognitive representation of time. To this end, linguistic, cognitive and behavioral evidence has revealed that people understand abstract temporal constructs by mapping them to concrete spatial domains (e.g. past = backward, future = forward). However, very little research has investigated factors that may determine the topographical characteristics of these spatiotemporal maps. Guided by the imperative role of episodic content for retrospective and prospective thought (i.e., MTT), here we explored the possibility that the spatialization of time is influenced by the amount of episodic detail a temporal unit contains. In two experiments, participants mapped temporal events along mediolateral (Experiment 1) and anterioposterior (Experiment 2) spatial planes. Importantly, the temporal units varied in self-relevance as they pertained to temporally proximal or distal events in the participant’s own life, the life of a best friend or the life of an unfamiliar other. Converging evidence from both experiments revealed that the amount of space used to represent time varied as a function of target (self, best friend or unfamiliar other) and temporal distance. Specifically, self-time was represented as occupying more space than time pertaining to other targets, but only for temporally proximal events. These results demonstrate the malleability of space-time mapping and suggest that there is a self-specific conceptualization of time that may influence MTT as well as other temporally relevant cognitive phenomena.  相似文献   

5.

Objectives

To determine whether within-visit blood pressure (BP) variability based on three measurements over minutes is associated with increased carotid intima-media thickness (IMT) and plaque in a general population.

Methods

A cross-sectional survey was performed in 2007, and a total of 1222 Beijing community residents aged 50–79 years belonging to part of the Chinese Multi-Provincial Cohort Study (CMCS) were recruited in this study. BP was measured three times at 5-minute intervals during a single visit, and the maximum absolute difference (MAD) between any two readings of three measurements was used to indicate within-visit BP variability. Carotid IMT and plaque scanned by B-mode ultrasound were identified as the surrogate end points in the intermediate stage of atherosclerosis.

Results

After adjustment for established cardiovascular risk factors, the odds ratio (OR) (95% confidence interval (CI)) for increased carotid IMT and internal carotid plaque associated with the highest within-visit diastolic BP (DBP) variability (MAD > mean + standard deviation (SD)) compared with participants in the lowest within-visit DBP variability (MAD ≤ mean −SD) was 4.92 (1.48–16.42) and 6.07 (1.31–28.10), respectively, in the normotensives (P = 0.01; P = 0.02). The OR (95% CI) for internal carotid plaque associated with the highest within-visit systolic BP (SBP) variability (MAD >mean +SD) compared with participants in the lowest within-visit SBP variability (MAD ≤ mean −SD) was 3.54 (1.26–10.00) in the hypertensives on antihypertensive therapy (P = 0.02).

Conclusions

Within-visit DBP variability was associated with increased carotid IMT and internal carotid plaque in the normotensive population, and within-visit SBP variability was associated with internal carotid plaque in hypertensive patients undergoing antihypertensive therapy.  相似文献   

6.
Feeling Voices     
Two experiments investigated deaf individuals'' ability to discriminate between same-sex talkers based on vibrotactile stimulation alone. Nineteen participants made same/different judgments on pairs of utterances presented to the lower back through voice coils embedded in a conforming chair. Discrimination of stimuli matched for F0, duration, and perceived magnitude was successful for pairs of spoken sentences in Experiment 1 (median percent correct = 83%) and pairs of vowel utterances in Experiment 2 (median percent correct = 75%). Greater difference in spectral tilt between “different” pairs strongly predicted their discriminability in both experiments. The current findings support the hypothesis that discrimination of complex vibrotactile stimuli involves the cortical integration of spectral information filtered through frequency-tuned skin receptors.  相似文献   

7.

Introduction

Variability in task output is a ubiquitous characteristic that results from non-continuous motor neuron firing during muscular force generation. However, variability can also be attributed to errors in control and coordination of the motor neurons themselves in diseases such as cerebral palsy (CP). Selective dorsal rhizotomy (SDR), a neurosurgical approach to sever sensory nerve roots, is thought to decrease redundant or excessive afferent signalling to intramedullary neurons. In addition to its demonstrated ability to reduce muscular spasticity, we hypothesised that SDR is able to decrease variability during gait, the most frequent functional motor activity of daily living.

Methods

Twelve CP children (aged 6.1±1.3yrs), who underwent SDR and performed gait analysis pre- and 12 months postoperatively, were compared to a control group of eleven typically developing (TD) children. Coefficients of variability as well as mean values were analysed for: temporal variables of gait, spatial parameters and velocity.

Results

Gait parameters of cadence (p = 0.006) and foot progression angle at mid-stance (p = 0.041) changed significantly from pre- to post-SDR. The variability of every temporal parameter was significantly reduced after SDR (p = 0.003–0.049), while it remained generally unchanged for the spatial parameters. Only a small change in gait velocity was observed, but variability in cadence was significantly reduced after SDR (p = 0.015). Almost all parameters changed with a tendency towards normal, but differences between TD and CP children remained in all parameters.

Discussion

The results confirm that SDR improves functional gait performance in children with CP. However, almost exclusively, parameters of temporal variability were significantly improved, leading to the conjecture that temporal variability and spatial variability may be governed independently by the motor cortex. As a result, temporal parameters of task performance may be more vulnerable to disruption, but also more responsive to treatment success of interventions such as SDR.  相似文献   

8.
Rapid acceleration and deceleration are vital for survival in many predator and prey animals and are important attributes of animal and human athletes. Adaptations for acceleration and deceleration are therefore likely to experience strong selective pressures—both natural and artificial. Here, we explore the mechanical and physiological constraints to acceleration. We examined two elite athletes bred and trained for acceleration performance (polo ponies and racing greyhounds), when performing maximal acceleration (and deceleration for ponies) in a competitive setting. We show that maximum acceleration and deceleration ability may be accounted for by two simple limits, one mechanical and one physiological. At low speed, acceleration and deceleration may be limited by the geometric constraints of avoiding net nose-up or tail-up pitching, respectively. At higher speeds, muscle power appears to limit acceleration.  相似文献   

9.
Prediction of “when” a partner will act and “what” he is going to do is crucial in joint-action contexts. However, studies on face-to-face interactions in which two people have to mutually adjust their movements in time and space are lacking. Moreover, while studies on passive observation have shown that somato-motor simulative processes are disrupted when the observed actor is perceived as an out-group or unfair individual, the impact of interpersonal perception on joint-actions has never been directly addressed. Here we explored this issue by comparing the ability of pairs of participants who did or did not undergo an interpersonal perception manipulation procedure to synchronise their reach-to-grasp movements during: i) a guided interaction, requiring pure temporal reciprocal coordination, and ii) a free interaction, requiring both time and space adjustments. Behavioural results demonstrate that while in neutral situations free and guided interactions are equally challenging for participants, a negative interpersonal relationship improves performance in guided interactions at the expense of the free interactive ones. This was paralleled at the kinematic level by the absence of movement corrections and by low movement variability in these participants, indicating that partners cooperating within a negative interpersonal bond executed the cooperative task on their own, without reciprocally adapting to the partner''s motor behaviour. Crucially, participants'' performance in the free interaction improved in the manipulated group during the second experimental session while partners became interdependent as suggested by higher movement variability and by the appearance of interference between the self-executed actions and those observed in the partner. Our study expands current knowledge about on-line motor interactions by showing that visuo-motor interference effects, mutual motor adjustments and motor-learning mechanisms are influenced by social perception.  相似文献   

10.
There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales.  相似文献   

11.
Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure.  相似文献   

12.
Kinematics variables of pointing movements where assessed in five adult subjects exposed acutely (30 min) and chronically (10 days) to a low O2 mixture (13.5% O2 in N2). Amplitude of displacement did not vary in both experimental conditions but movement duration markedly increased compared to pre and post exposure conditions. While in acute hypoxia the times of acceleration and deceleration are almost equal, in chronic hypoxia deceleration time exceeded of 100 ms the time of acceleration. The time from the peak acceleration to the peak of deceleration ("switch" time) increased in both experimental conditions and was about 50% of the movement duration. This time lengthening at hypoxia may be explained either by alteration of propioceptive loops or by a different strategy elaborated by the CNS to generally slow accurate movements.  相似文献   

13.
The aim of this study was to investigate if trunk muscle activation patterns during rapid bilateral shoulder flexions are affected by movement amplitude. Eleven healthy males performed shoulder flexion movements starting from a position with arms along sides (0°) to either 45°, 90° or 180°. EMG was measured bilaterally from transversus abdominis (TrA), obliquus internus (OI) with intra-muscular electrodes, and from rectus abdominis (RA), erector spinae (ES) and deltoideus with surface electrodes. 3D kinematics was recorded and inverse dynamics was used to calculate the reactive linear forces and torque about the shoulders and the linear and angular impulses. The sequencing of trunk muscle onsets at the initiation of arm movements was the same across movement amplitudes with ES as the first muscle activated, followed by TrA, RA and OI. All arm movements induced a flexion angular impulse about the shoulders during acceleration that was reversed during deceleration. Increased movement amplitude led to shortened onset latencies of the abdominal muscles and increased level of activation in TrA and ES. The activation magnitude of TrA was similar in acceleration and deceleration where the other muscles were specific to acceleration or deceleration. The findings show that arm movements need to be standardized when used as a method to evaluate trunk muscle activation patterns and that inclusion of the deceleration of the arms in the analysis allow the study of the relationship between trunk muscle activation and direction of perturbing torque during one and the same arm movement.  相似文献   

14.
Animals do not behave in exactly the same way when repeatedly tested in the same context or situation, even once systematic variation, such as habituation, has been controlled for. This unpredictability is called intraindividual variability (IIV) and has been little studied in animals. Here we investigated how IIV in boldness (estimated by flight initiation distances) changed across two seasons—the dry, non-breeding season and the wet, breeding season—in a wild population of the Namibian rock agama, Agama planiceps. We found significant differences in IIV both between individuals and seasons, and IIV was higher in the wet season, suggesting plasticity in IIV. Further, IIV was highly repeatable (r = 0.61) between seasons and we found strong negative correlations between consistent individual differences in flight initiation distances, i.e. their boldness, and individuals'' IIVs. We suggest that to understand personality in animals, researchers should generate a personality ‘profile’ that includes not only the relative level of a trait (i.e. its personality), but also its plasticity and variability under natural conditions.  相似文献   

15.
Five experiments examined whether changes in the pace of external events influence people’s judgments of duration. In Experiments 1a–1c, participants heard pieces of music whose tempo accelerated, decelerated, or remained constant. In Experiment 2, participants completed a visuo-motor task in which the rate of stimulus presentation accelerated, decelerated, or remained constant. In Experiment 3, participants completed a reading task in which facts appeared on-screen at accelerating, decelerating, or constant rates. In all experiments, the physical duration of the to-be-judged interval was the same across conditions. We found no significant effects of temporal structure on duration judgments in any of the experiments, either when participants knew that a time estimate would be required (prospective judgments) or when they did not (retrospective judgments). These results provide a starting point for the investigation of how temporal structure affects one-off judgments of duration like those typically made in natural settings.  相似文献   

16.
The concept of shared motor representations between action execution and various covert conditions has been demonstrated through a number of psychophysiological modalities over the past two decades. Rarely, however, have researchers considered the congruence of physical, imaginary and observed movement markers in a single paradigm and never in a design where eye movement metrics are the markers. In this study, participants were required to perform a forward reach and point Fitts’ Task on a digitizing tablet whilst wearing an eye movement system. Gaze metrics were used to compare behaviour congruence between action execution, action observation, and guided and unguided movement imagery conditions. The data showed that participants attended the same task-related visual cues between conditions but the strategy was different. Specifically, the number of fixations was significantly different between action execution and all covert conditions. In addition, fixation duration was congruent between action execution and action observation only, and both conditions displayed an indirect Fitts’ Law effect. We therefore extend the understanding of the common motor representation by demonstrating, for the first time, common spatial eye movement metrics across simulation conditions and some specific temporal congruence for action execution and action observation. Our findings suggest that action observation may be an effective technique in supporting motor processes. The use of video as an adjunct to physical techniques may be beneficial in supporting motor planning in both performance and clinical rehabilitation environments.  相似文献   

17.
The present study investigated the relationship between individual differences in timing movements at the level of milliseconds and performance on selected cognitive and fine motor skills. For this purpose, young adult participants (N = 100) performed a repetitive movement task paced by an auditory metronome at different rates. Psychometric measures included the digit-span and symbol search subtasks from the Wechsler battery as well as the Raven SPM. Fine motor skills were assessed with the Purdue Pegboard test. Motor timing performance was significantly related (mean r = .3) to cognitive measures, and explained both unique and shared variance with information-processing speed of Raven''s scores. No significant relations were found between motor timing measures and fine motor skills. These results show that individual differences in cognitive and motor timing performance is to some extent dependent upon shared processing not associated with individual differences in manual dexterity.  相似文献   

18.
Epidemiological studies have shown an inverse correlation between the incidence of lymphatic filariasis (LF) and the incidence of allergies and autoimmunity. However, the interrelationship between LF and type-2 diabetes is not known and hence, a cross sectional study to assess the baseline prevalence and the correlates of sero-positivity of LF among diabetic subjects was carried out (n = 1416) as part of the CURES study. There was a significant decrease in the prevalence of LF among diabetic subjects (both newly diagnosed [5.7%] and those under treatment [4.3%]) compared to pre-diabetic subjects [9.1%] (p = 0.0095) and non-diabetic subjects [10.4%] (p = 0.0463). A significant decrease in filarial antigen load (p = 0.04) was also seen among diabetic subjects. Serum cytokine levels of the pro-inflammatory cytokines—IL-6 and GM-CSF—were significantly lower in diabetic subjects who were LF positive, compared to those who were LF negative. There were, however, no significant differences in the levels of anti-inflammatory cytokines—IL-10, IL-13 and TGF-β—between the two groups. Although a direct causal link has yet to be shown, there appears to be a striking inverse relationship between the prevalence of LF and diabetes, which is reflected by a diminished pro-inflammatory cytokine response in Asian Indians with diabetes and concomitant LF.  相似文献   

19.

The main objective(s) of the study

The aim of this study was to analyze: a) abnormalities in the length of lower limb muscles, b) the correctness of movement patterns, and c) the impact of functional limitations of muscles on the correctness of fundamental movement patterns in a group of female soccer players, in relation to their skill level.

Materials and Methods

21 female soccer players from Polish Ekstraklasa and 22 players from the 1st Division were tested for lower limb muscle length restrictions and level of fundamental movement skills (with the Fundamental Movement Screen™ test concept by Gray Cook). Chi-square test was used for categorical unrelated variables. Differences between groups in absolute point values were analyzed using the non-parametric Mann-Whitney U test. Statistical significance was set at p<0.05.

Results

Statistically significant higher number of measurements indicating an abnormal length of rectus femoris was observed in the 1st Division group (p = 0.0433). In the group of Ekstraklasa the authors obtained a significantly higher number of abnormal hamstring test results (p = 0.0006). Ekstraklasa players scored higher in the rotational stability test of the trunk (p = 0.0008), whereas the 1st Division players scored higher in the following tests: deep squat (p = 0.0220), in-line lunge (p = 0.0042) and active straight leg raise (p = 0.0125). The results suggest that there are different functional reasons affecting point values obtained in the FMS™ tests in both analyzed groups.

Conclusions

The differences in the flexibility of rectus femoris and hamstring muscle observed between female soccer players with different levels of training, may result from a long-term impact of soccer training on the muscle-tendon system and articular structures. Different causes of abnormalities in fundamental movement patterns in both analyzed groups suggest the need for tailoring prevention programs to the level of sport skills represented by the players.  相似文献   

20.
Rapid detection of evolutionarily relevant threats (e.g., fearful faces) is important for human survival. The ability to rapidly detect fearful faces exhibits high variability across individuals. The present study aimed to investigate the relationship between behavioral detection ability and brain activity, using both event-related potential (ERP) and event-related oscillation (ERO) measurements. Faces with fearful or neutral facial expressions were presented for 17 ms or 200 ms in a backward masking paradigm. Forty-two participants were required to discriminate facial expressions of the masked faces. The behavioral sensitivity index d'' showed that the detection ability to rapidly presented and masked fearful faces varied across participants. The ANOVA analyses showed that the facial expression, hemisphere, and presentation duration affected the grand-mean ERP (N1, P1, and N170) and ERO (below 20 Hz and lasted from 100 ms to 250 ms post-stimulus, mainly in theta band) brain activity. More importantly, the overall detection ability of 42 subjects was significantly correlated with the emotion effect (i.e., fearful vs. neutral) on ERP (r = 0.403) and ERO (r = 0.552) measurements. A higher d'' value was corresponding to a larger size of the emotional effect (i.e., fearful – neutral) of N170 amplitude and a larger size of the emotional effect of the specific ERO spectral power at the right hemisphere. The present results suggested a close link between behavioral detection ability and the N170 amplitude as well as the ERO spectral power below 20 Hz in individuals. The emotional effect size between fearful and neutral faces in brain activity may reflect the level of conscious awareness of fearful faces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号