首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.  相似文献   

2.
The activity and expression of plasma membrane NADH coenzyme Q reductase is increased by calorie restriction (CR) in rodents. Although this effect is well-established and is necessary for CR's ability to delay aging, the mechanism is unknown. Here we show that the Saccharomyces cerevisiae homolog, NADH-Coenzyme Q reductase 1 (NQR1), resides at the plasma membrane and when overexpressed extends both replicative and chronological lifespan. We show that NQR1 extends replicative lifespan in a SIR2-dependent manner by shifting cells towards respiratory metabolism. Chronological lifespan extension, in contrast, occurs via an SIR2-independent decrease in ethanol production. We conclude that NQR1 is a key mediator of lifespan extension by CR through its effects on yeast metabolism and discuss how these findings could suggest a function for this protein in lifespan extension in mammals.  相似文献   

3.
Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.  相似文献   

4.
Methionine restriction (MetR) extends lifespan in animal models including rodents. Using human diploid fibroblasts (HDF), we report here that MetR significantly extends their replicative lifespan, thereby postponing cellular senescence. MetR significantly decreased activity of mitochondrial complex IV and diminished the accumulation of reactive oxygen species. Lifespan extension was accompanied by a significant decrease in the levels of subunits of mitochondrial complex IV, but also complex I, which was due to a decreased translation rate of several mtDNA‐encoded subunits. Together, these findings indicate that MetR slows down aging in human cells by modulating mitochondrial protein synthesis and respiratory chain assembly.  相似文献   

5.
6.
7.
Interventions that slow aging and prevent chronic disease may come from an understanding of how dietary restriction (DR) increases lifespan. Mechanisms proposed to mediate DR longevity include reduced mTOR signaling, activation of the NAD+‐dependent deacylases known as sirtuins, and increases in NAD+ that derive from higher levels of respiration. Here, we explored these hypotheses in Caenorhabditis elegans using a new liquid feeding protocol. DR lifespan extension depended upon a group of regulators that are involved in stress responses and mTOR signaling, and have been implicated in DR by some other regimens [DAF‐16 (FOXO), SKN‐1 (Nrf1/2/3), PHA‐4 (FOXA), AAK‐2 (AMPK)]. Complete DR lifespan extension required the sirtuin SIR‐2.1 (SIRT1), the involvement of which in DR has been debated. The nicotinamidase PNC‐1, a key NAD+ salvage pathway component, was largely required for DR to increase lifespan but not two healthspan indicators: movement and stress resistance. Independently of pnc‐1, DR increased the proportion of respiration that is coupled to ATP production but, surprisingly, reduced overall oxygen consumption. We conclude that stress response and NAD+‐dependent mechanisms are each critical for DR lifespan extension, although some healthspan benefits do not require NAD+ salvage. Under DR conditions, NAD+‐dependent processes may be supported by a DR‐induced shift toward oxidative metabolism rather than an increase in total respiration.  相似文献   

8.
Increased replicative longevity in Saccharomyces cerevisiae because of calorie restriction has been linked to enhanced mitochondrial respiratory activity. Here we have further investigated how mitochondrial respiration affects yeast life span. We found that calorie restriction by growth in low glucose increased respiration but decreased mitochondrial reactive oxygen species production relative to oxygen consumption. Calorie restriction also enhanced chronological life span. The beneficial effects of calorie restriction on mitochondrial respiration, reactive oxygen species release, and replicative and chronological life span could be mimicked by uncoupling agents such as dinitrophenol. Conversely, chronological life span decreased in cells treated with antimycin (which strongly increases mitochondrial reactive oxygen species generation) or in yeast mutants null for mitochondrial superoxide dismutase (which removes superoxide radicals) and for RTG2 (which participates in retrograde feedback signaling between mitochondria and the nucleus). These results suggest that yeast aging is linked to changes in mitochondrial metabolism and oxidative stress and that mild mitochondrial uncoupling can increase both chronological and replicative life span.  相似文献   

9.
T Chiba  H Yamaza    I Shimokawa 《Current Genomics》2007,8(7):423-428
Insulin/insulin-like growth factor-I (IGF-I) pathways are recognized as critical signaling pathways involved in the control of lifespans in lower organisms to mammals. Caloric restriction (CR) reduces plasma concentration of insulin, growth hormone (GH), and IGF-I. CR retards various age-dependent disorders such as nuerodegenerative diseases and extends lifespan in laboratory rodents. These beneficial effects of CR are partly mimicked in spontaneous or genetically engineered rodent models of reduced insulin and GH/IGF-I axis. Most of these long-living rodents show increased insulin sensitivity; however, recent study has revealed that some other rodents show normal or reduced insulin sensitivity. Thus, increased insulin sensitivity might be not prerequisite for lifespan extension in insulin/GH/IGF-I altered longevity rodent models. These results highlighted that, for lifespan extension, the intracellular signaling molecules of insulin/GH/IGF-I pathways might be more important than actual peripheral or systemic insulin action.  相似文献   

10.
11.
12.
The mammalian (mechanistic) target of rapamycin (mTOR) regulates critical immune processes that remain incompletely defined. Interest in mTOR inhibitor drugs is heightened by recent demonstrations that the mTOR inhibitor rapamycin extends lifespan and healthspan in mice. Rapamycin or related analogues (rapalogues) also mitigate age‐related debilities including increasing antigen‐specific immunity, improving vaccine responses in elderly humans, and treating cancers and autoimmunity, suggesting important new clinical applications. Nonetheless, immune toxicity concerns for long‐term mTOR inhibition, particularly immunosuppression, persist. Although mTOR is pivotal to fundamental, important immune pathways, little is reported on immune effects of mTOR inhibition in lifespan or healthspan extension, or with chronic mTOR inhibitor use. We comprehensively analyzed immune effects of rapamycin as used in lifespan extension studies. Gene expression profiling found many and novel changes in genes affecting differentiation, function, homeostasis, exhaustion, cell death, and inflammation in distinct T‐ and B‐lymphocyte and myeloid cell subpopulations. Immune functions relevant to aging and inflammation, and to cancer and infections, and innate lymphoid cell effects were validated in vitro and in vivo. Rapamycin markedly prolonged lifespan and healthspan in cancer‐ and infection‐prone mice supporting disease mitigation as a mechanism for mTOR suppression‐mediated longevity extension. It modestly altered gut metagenomes, and some metagenomic effects were linked to immune outcomes. Our data show novel mTOR inhibitor immune effects meriting further studies in relation to longevity and healthspan extension.  相似文献   

13.
Dietary restriction (DR) extends the lifespan of a wide range of species, although the universality of this effect has never been quantitatively examined. Here, we report the first comprehensive comparative meta-analysis of DR across studies and species. Overall, DR significantly increased lifespan, but this effect is modulated by several factors. In general, DR has less effect in extending lifespan in males and also in non-model organisms. Surprisingly, the proportion of protein intake was more important for life extension via DR than the degree of caloric restriction. Furthermore, we show that reduction in both age-dependent and age-independent mortality rates drives life extension by DR among the well-studied laboratory model species (yeast, nematode worms, fruit flies and rodents). Our results suggest that convergent adaptation to laboratory conditions better explains the observed DR-longevity relationship than evolutionary conservation although alternative explanations are possible.  相似文献   

14.
Calorie restriction (CR) extends the mean and maximum lifespan of a wide variety of organisms ranging from yeast to mammals, although the molecular mechanisms of action remain unclear. For the budding yeast Saccharomyces cerevisiae reducing glucose in the growth medium extends both the replicative and chronological lifespans (CLS). The conserved NAD(+)-dependent histone deacetylase, Sir2p, promotes replicative longevity in S. cerevisiae by suppressing recombination within the ribosomal DNA locus and has been proposed to mediate the effects of CR on aging. In this study, we investigated the functional relationships of the yeast Sirtuins (Sir2p, Hst1p, Hst2p, Hst3p and Hst4p) with CLS and CR. SIR2, HST2, and HST4 were not major regulators of CLS and were not required for the lifespan extension caused by shifting the glucose concentration from 2 to 0.5% (CR). Deleting HST1 or HST3 moderately shortened CLS, but did not prevent CR from extending lifespan. CR therefore works through a Sirtuin-independent mechanism in the chronological aging system. We also show that low temperature or high osmolarity additively extends CLS when combined with CR, suggesting that these stresses and CR act through separate pathways. The CR effect on CLS was not specific to glucose. Restricting other simple sugars such as galactose or fructose also extended lifespan. Importantly, growth on nonfermentable carbon sources that force yeast to exclusively utilize respiration extended lifespan at nonrestricted concentrations and provided no additional benefit when restricted, suggesting that elevated respiration capacity is an important determinant of chronological longevity.  相似文献   

15.
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S‐adenosylmethionine, which, after transferring its methyl group, is converted to S‐adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.  相似文献   

16.
Reduced mechanistic target of rapamycin (mTOR) signalling extends lifespan in yeast, nematodes, fruit flies and mice, highlighting a physiological pathway that could modulate aging in evolutionarily divergent organisms. This signalling system is also hypothesized to play a central role in lifespan extension via dietary restriction. By collating data from 48 available published studies examining lifespan with reduced mTOR signalling, we show that reduced mTOR signalling provides similar increases in median lifespan across species, with genetic mTOR manipulations consistently providing greater life extension than pharmacological treatment with rapamycin. In contrast to the consistency in changes in median lifespan, however, the demographic causes for life extension are highly species specific. Reduced mTOR signalling extends lifespan in nematodes by strongly reducing the degree to which mortality rates increase with age (aging rate). By contrast, life extension in mice and yeast occurs largely by pushing back the onset of aging, but not altering the shape of the mortality curve once aging starts. Importantly, in mice, the altered pattern of mortality induced by reduced mTOR signalling is different to that induced by dietary restriction, which reduces the rate of aging. Effects of mTOR signalling were also sex dependent, but only within mice, and not within flies, thus again species specific. An alleviation of age‐associated mortality is not a shared feature of reduced mTOR signalling across model organisms and does not replicate the established age‐related survival benefits of dietary restriction.  相似文献   

17.
18.
19.
Rtg2 protein links metabolism and genome stability in yeast longevity   总被引:4,自引:0,他引:4  
Mitochondrial dysfunction induces a signaling pathway, which culminates in changes in the expression of many nuclear genes. This retrograde response, as it is called, extends yeast replicative life span. It also results in a marked increase in the cellular content of extrachromosomal ribosomal DNA circles (ERCs), which can cause the demise of the cell. We have resolved the conundrum of how these two molecular mechanisms of yeast longevity operate in tandem. About 50% of the life-span extension elicited by the retrograde response involves processes other than those that counteract the deleterious effects of ERCs. Deletion of RTG2, a gene that plays a central role in relaying the retrograde response signal to the nucleus, enhances the generation of ERCs in cells with (grande) or in cells without (petite) fully functional mitochondria, and it curtails the life span of each. In contrast, overexpression of RTG2 diminishes ERC formation in both grandes and petites. The excess Rtg2p did not augment the retrograde response, indicating that it was not engaged in retrograde signaling. FOB1, which is known to be required for ERC formation, and RTG2 were found to be in converging pathways for ERC production. RTG2 did not affect silencing of ribosomal DNA in either grandes or petites, which were similar to each other in the extent of silencing at this locus. Silencing of ribosomal DNA increased with replicative age in either the presence or the absence of Rtg2p, distinguishing silencing and ERC accumulation. Our results indicate that the suppression of ERC production by Rtg2p requires that it not be in the process of transducing the retrograde signal from the mitochondrion. Thus, RTG2 lies at the nexus of cellular metabolism and genome stability, coordinating two pathways that have opposite effects on yeast longevity.  相似文献   

20.
Activation of Sir2 orthologs is proposed to increase lifespan downstream of dietary restriction. Here, we describe an examination of the effect of 32 different lifespan-extending mutations and four methods of DR on replicative lifespan (RLS) in the short-lived sir2Δ yeast strain. In every case, deletion of SIR2 prevented RLS extension; however, RLS extension was restored when both SIR2 and FOB1 were deleted in several cases, demonstrating that SIR2 is not directly required for RLS extension. These findings indicate that suppression of the sir2Δ lifespan defect is a rare phenotype among longevity interventions and suggest that sir2Δ cells senesce rapidly by a mechanism distinct from that of wild-type cells. They also demonstrate that failure to observe lifespan extension in a short-lived background, such as cells or animals lacking sirtuins, should be interpreted with caution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号