首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Yi Jia  Jean-Luc Jannink 《Genetics》2012,192(4):1513-1522
Genetic correlations between quantitative traits measured in many breeding programs are pervasive. These correlations indicate that measurements of one trait carry information on other traits. Current single-trait (univariate) genomic selection does not take advantage of this information. Multivariate genomic selection on multiple traits could accomplish this but has been little explored and tested in practical breeding programs. In this study, three multivariate linear models (i.e., GBLUP, BayesA, and BayesCπ) were presented and compared to univariate models using simulated and real quantitative traits controlled by different genetic architectures. We also extended BayesA with fixed hyperparameters to a full hierarchical model that estimated hyperparameters and BayesCπ to impute missing phenotypes. We found that optimal marker-effect variance priors depended on the genetic architecture of the trait so that estimating them was beneficial. We showed that the prediction accuracy for a low-heritability trait could be significantly increased by multivariate genomic selection when a correlated high-heritability trait was available. Further, multiple-trait genomic selection had higher prediction accuracy than single-trait genomic selection when phenotypes are not available on all individuals and traits. Additional factors affecting the performance of multiple-trait genomic selection were explored.  相似文献   

2.
Genomic selection can increase genetic gain per generation through early selection. Genomic selection is expected to be particularly valuable for traits that are costly to phenotype and expressed late in the life cycle of long-lived species. Alternative approaches to genomic selection prediction models may perform differently for traits with distinct genetic properties. Here the performance of four different original methods of genomic selection that differ with respect to assumptions regarding distribution of marker effects, including (i) ridge regression-best linear unbiased prediction (RR-BLUP), (ii) Bayes A, (iii) Bayes Cπ, and (iv) Bayesian LASSO are presented. In addition, a modified RR-BLUP (RR-BLUP B) that utilizes a selected subset of markers was evaluated. The accuracy of these methods was compared across 17 traits with distinct heritabilities and genetic architectures, including growth, development, and disease-resistance properties, measured in a Pinus taeda (loblolly pine) training population of 951 individuals genotyped with 4853 SNPs. The predictive ability of the methods was evaluated using a 10-fold, cross-validation approach, and differed only marginally for most method/trait combinations. Interestingly, for fusiform rust disease-resistance traits, Bayes Cπ, Bayes A, and RR-BLUB B had higher predictive ability than RR-BLUP and Bayesian LASSO. Fusiform rust is controlled by few genes of large effect. A limitation of RR-BLUP is the assumption of equal contribution of all markers to the observed variation. However, RR-BLUP B performed equally well as the Bayesian approaches.The genotypic and phenotypic data used in this study are publically available for comparative analysis of genomic selection prediction models.  相似文献   

3.
In comparison to conventional marker-assisted selection (MAS), which utilizes only a subset of genetic markers associated with a trait to predict breeding values (BVs), genome-wide selection (GWS) improves prediction accuracies by incorporating all markers into a model simultaneously. This strategy avoids risks of missing quantitative trait loci (QTL) with small effects. Here, we evaluated the accuracy of prediction for three corn flowering traits days to silking, days to anthesis, and anthesis-silking interval with GWS based on cross-validation experiments using a large data set of 25 nested association mapping populations in maize (Zea mays). We found that GWS via ridge regression-best linear unbiased prediction (RR-BLUP) gave significantly higher predictions compared to MAS utilizing composite interval mapping (CIM). The CIM method may be selected over multiple linear regression to decrease over-estimations of the efficiency of GWS over a MAS strategy. The RR-BLUP method was the preferred method for estimating marker effects in GWS with prediction accuracies comparable to or greater than BayesA and BayesB. The accuracy with RR-BLUP increased with training sample proportion, marker density, and heritability until it reached a plateau. In general, gains in accuracy with RR-BLUP over CIM increased with decreases of these factors. Compared to training sample proportion, the accuracy of prediction with RR-BLUP was relatively insensitive to marker density.  相似文献   

4.

Background

Marker-assisted selection (MAS) and genomic selection (GS) based on genome-wide marker data provide powerful tools to predict the genotypic value of selection material in plant breeding. However, case-to-case optimization of these approaches is required to achieve maximum accuracy of prediction with reasonable input.

Results

Based on extended field evaluation data for grain yield, plant height, starch content and total pentosan content of elite hybrid rye derived from testcrosses involving two bi-parental populations that were genotyped with 1048 molecular markers, we compared the accuracy of prediction of MAS and GS in a cross-validation approach. MAS delivered generally lower and in addition potentially over-estimated accuracies of prediction than GS by ridge regression best linear unbiased prediction (RR-BLUP). The grade of relatedness of the plant material included in the estimation and test sets clearly affected the accuracy of prediction of GS. Within each of the two bi-parental populations, accuracies differed depending on the relatedness of the respective parental lines. Across populations, accuracy increased when both populations contributed to estimation and test set. In contrast, accuracy of prediction based on an estimation set from one population to a test set from the other population was low despite that the two bi-parental segregating populations under scrutiny shared one parental line. Limiting the number of locations or years in field testing reduced the accuracy of prediction of GS equally, supporting the view that to establish robust GS calibration models a sufficient number of test locations is of similar importance as extended testing for more than one year.

Conclusions

In hybrid rye, genomic selection is superior to marker-assisted selection. However, it achieves high accuracies of prediction only for selection candidates closely related to the plant material evaluated in field trials, resulting in a rather pessimistic prognosis for distantly related material. Both, the numbers of evaluation locations and testing years in trials contribute equally to prediction accuracy.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-556) contains supplementary material, which is available to authorized users.  相似文献   

5.
标记辅助选择改良数量性状的研究进展   总被引:11,自引:0,他引:11  
刘鹏渊  朱军 《遗传》2001,23(4):375-380
本系统地介绍了近年来有关标记辅助选择改良数量性状的研究进展,主要包括标记辅助回交、指数选择与最佳线性无偏预测的理论和应用研究概况。理论与计算机模拟表明标记辅助选择比常规表型选择更有效,但在实际育种中并不理想。同时本还就当前标记辅助选择存在的问题和前景进行了讨论。  相似文献   

6.
Genomic selection (GS) is a method for predicting breeding values of plants or animals using many molecular markers that is commonly implemented in two stages. In plant breeding the first stage usually involves computation of adjusted means for genotypes which are then used to predict genomic breeding values in the second stage. We compared two classical stage-wise approaches, which either ignore or approximate correlations among the means by a diagonal matrix, and a new method, to a single-stage analysis for GS using ridge regression best linear unbiased prediction (RR-BLUP). The new stage-wise method rotates (orthogonalizes) the adjusted means from the first stage before submitting them to the second stage. This makes the errors approximately independently and identically normally distributed, which is a prerequisite for many procedures that are potentially useful for GS such as machine learning methods (e.g. boosting) and regularized regression methods (e.g. lasso). This is illustrated in this paper using componentwise boosting. The componentwise boosting method minimizes squared error loss using least squares and iteratively and automatically selects markers that are most predictive of genomic breeding values. Results are compared with those of RR-BLUP using fivefold cross-validation. The new stage-wise approach with rotated means was slightly more similar to the single-stage analysis than the classical two-stage approaches based on non-rotated means for two unbalanced datasets. This suggests that rotation is a worthwhile pre-processing step in GS for the two-stage approaches for unbalanced datasets. Moreover, the predictive accuracy of stage-wise RR-BLUP was higher (5.0–6.1 %) than that of componentwise boosting.  相似文献   

7.
In genome-based prediction there is considerable uncertainty about the statistical model and method required to maximize prediction accuracy. For traits influenced by a small number of quantitative trait loci (QTL), predictions are expected to benefit from methods performing variable selection [e.g., BayesB or the least absolute shrinkage and selection operator (LASSO)] compared to methods distributing effects across the genome [ridge regression best linear unbiased prediction (RR-BLUP)]. We investigate the assumptions underlying successful variable selection by combining computer simulations with large-scale experimental data sets from rice (Oryza sativa L.), wheat (Triticum aestivum L.), and Arabidopsis thaliana (L.). We demonstrate that variable selection can be successful when the number of phenotyped individuals is much larger than the number of causal mutations contributing to the trait. We show that the sample size required for efficient variable selection increases dramatically with decreasing trait heritabilities and increasing extent of linkage disequilibrium (LD). We contrast and discuss contradictory results from simulation and experimental studies with respect to superiority of variable selection methods over RR-BLUP. Our results demonstrate that due to long-range LD, medium heritabilities, and small sample sizes, superiority of variable selection methods cannot be expected in plant breeding populations even for traits like FRIGIDA gene expression in Arabidopsis and flowering time in rice, assumed to be influenced by a few major QTL. We extend our conclusions to the analysis of whole-genome sequence data and infer upper bounds for the number of causal mutations which can be identified by LASSO. Our results have major impact on the choice of statistical method needed to make credible inferences about genetic architecture and prediction accuracy of complex traits.  相似文献   

8.
C-L Wang  X-D Ding  J-Y Wang  J-F Liu  W-X Fu  Z Zhang  Z-J Yin  Q Zhang 《Heredity》2013,110(3):213-219
Estimation of genomic breeding values is the key step in genomic selection (GS). Many methods have been proposed for continuous traits, but methods for threshold traits are still scarce. Here we introduced threshold model to the framework of GS, and specifically, we extended the three Bayesian methods BayesA, BayesB and BayesCπ on the basis of threshold model for estimating genomic breeding values of threshold traits, and the extended methods are correspondingly termed BayesTA, BayesTB and BayesTCπ. Computing procedures of the three BayesT methods using Markov Chain Monte Carlo algorithm were derived. A simulation study was performed to investigate the benefit of the presented methods in accuracy with the genomic estimated breeding values (GEBVs) for threshold traits. Factors affecting the performance of the three BayesT methods were addressed. As expected, the three BayesT methods generally performed better than the corresponding normal Bayesian methods, in particular when the number of phenotypic categories was small. In the standard scenario (number of categories=2, incidence=30%, number of quantitative trait loci=50, h2=0.3), the accuracies were improved by 30.4%, 2.4%, and 5.7% points, respectively. In most scenarios, BayesTB and BayesTCπ generated similar accuracies and both performed better than BayesTA. In conclusion, our work proved that threshold model fits well for predicting GEBVs of threshold traits, and BayesTCπ is supposed to be the method of choice for GS of threshold traits.  相似文献   

9.

Background

Genomic selection (GS) uses molecular breeding values (MBV) derived from dense markers across the entire genome for selection of young animals. The accuracy of MBV prediction is important for a successful application of GS. Recently, several methods have been proposed to estimate MBV. Initial simulation studies have shown that these methods can accurately predict MBV. In this study we compared the accuracies and possible bias of five different regression methods in an empirical application in dairy cattle.

Methods

Genotypes of 7,372 SNP and highly accurate EBV of 1,945 dairy bulls were used to predict MBV for protein percentage (PPT) and a profit index (Australian Selection Index, ASI). Marker effects were estimated by least squares regression (FR-LS), Bayesian regression (Bayes-R), random regression best linear unbiased prediction (RR-BLUP), partial least squares regression (PLSR) and nonparametric support vector regression (SVR) in a training set of 1,239 bulls. Accuracy and bias of MBV prediction were calculated from cross-validation of the training set and tested against a test team of 706 young bulls.

Results

For both traits, FR-LS using a subset of SNP was significantly less accurate than all other methods which used all SNP. Accuracies obtained by Bayes-R, RR-BLUP, PLSR and SVR were very similar for ASI (0.39-0.45) and for PPT (0.55-0.61). Overall, SVR gave the highest accuracy.All methods resulted in biased MBV predictions for ASI, for PPT only RR-BLUP and SVR predictions were unbiased. A significant decrease in accuracy of prediction of ASI was seen in young test cohorts of bulls compared to the accuracy derived from cross-validation of the training set. This reduction was not apparent for PPT. Combining MBV predictions with pedigree based predictions gave 1.05 - 1.34 times higher accuracies compared to predictions based on pedigree alone. Some methods have largely different computational requirements, with PLSR and RR-BLUP requiring the least computing time.

Conclusions

The four methods which use information from all SNP namely RR-BLUP, Bayes-R, PLSR and SVR generate similar accuracies of MBV prediction for genomic selection, and their use in the selection of immediate future generations in dairy cattle will be comparable. The use of FR-LS in genomic selection is not recommended.  相似文献   

10.
Habier D  Fernando RL  Dekkers JC 《Genetics》2007,177(4):2389-2397
The success of genomic selection depends on the potential to predict genome-assisted breeding values (GEBVs) with high accuracy over several generations without additional phenotyping after estimating marker effects. Results from both simulations and practical applications have to be evaluated for this potential, which requires linkage disequilibrium (LD) between markers and QTL. This study shows that markers can capture genetic relationships among genotyped animals, thereby affecting accuracies of GEBVs. Strategies to validate the accuracy of GEBVs due to LD are given. Simulations were used to show that accuracies of GEBVs obtained by fixed regression-least squares (FR-LS), random regression-best linear unbiased prediction (RR-BLUP), and Bayes-B are nonzero even without LD. When LD was present, accuracies decrease rapidly in generations after estimation due to the decay of genetic relationships. However, there is a persistent accuracy due to LD, which can be estimated by modeling the decay of genetic relationships and the decay of LD. The impact of genetic relationships was greatest for RR-BLUP. The accuracy of GEBVs can result entirely from genetic relationships captured by markers, and to validate the potential of genomic selection, several generations have to be analyzed to estimate the accuracy due to LD. The method of choice was Bayes-B; FR-LS should be investigated further, whereas RR-BLUP cannot be recommended.  相似文献   

11.

Background

Artificial neural networks (ANN) mimic the function of the human brain and are capable of performing massively parallel computations for data processing and knowledge representation. ANN can capture nonlinear relationships between predictors and responses and can adaptively learn complex functional forms, in particular, for situations where conventional regression models are ineffective. In a previous study, ANN with Bayesian regularization outperformed a benchmark linear model when predicting milk yield in dairy cattle or grain yield of wheat. Although breeding values rely on the assumption of additive inheritance, the predictive capabilities of ANN are of interest from the perspective of their potential to increase the accuracy of prediction of molecular breeding values used for genomic selection. This motivated the present study, in which the aim was to investigate the accuracy of ANN when predicting the expected progeny difference (EPD) of marbling score in Angus cattle. Various ANN architectures were explored, which involved two training algorithms, two types of activation functions, and from 1 to 4 neurons in hidden layers. For comparison, BayesCπ models were used to select a subset of optimal markers (referred to as feature selection), under the assumption of additive inheritance, and then the marker effects were estimated using BayesCπ with π set equal to zero. This procedure is referred to as BayesCpC and was implemented on a high-throughput computing cluster.

Results

The ANN with Bayesian regularization method performed equally well for prediction of EPD as BayesCpC, based on prediction accuracy and sum of squared errors. With the 3K-SNP panel, for example, prediction accuracy was 0.776 using BayesCpC, and ranged from 0.776 to 0.807 using BRANN. With the selected 700-SNP panel, prediction accuracy was 0.863 for BayesCpC and ranged from 0.842 to 0.858 for BRANN. However, prediction accuracy for the ANN with scaled conjugate gradient back-propagation was lower, ranging from 0.653 to 0.689 with the 3K-SNP panel, and from 0.743 to 0.793 with the selected 700-SNP panel.

Conclusions

ANN with Bayesian regularization performed as well as linear Bayesian regression models in predicting additive genetic values, supporting the idea that ANN are useful as universal approximators of functions of interest in breeding contexts.  相似文献   

12.
Yong Jiang  Jochen C. Reif 《Genetics》2015,201(2):759-768
Modeling epistasis in genomic selection is impeded by a high computational load. The extended genomic best linear unbiased prediction (EG-BLUP) with an epistatic relationship matrix and the reproducing kernel Hilbert space regression (RKHS) are two attractive approaches that reduce the computational load. In this study, we proved the equivalence of EG-BLUP and genomic selection approaches, explicitly modeling epistatic effects. Moreover, we have shown why the RKHS model based on a Gaussian kernel captures epistatic effects among markers. Using experimental data sets in wheat and maize, we compared different genomic selection approaches and concluded that prediction accuracy can be improved by modeling epistasis for selfing species but may not for outcrossing species.  相似文献   

13.
In genomic prediction, common analysis methods rely on a linear mixed-model framework to estimate SNP marker effects and breeding values of animals or plants. Ridge regression–best linear unbiased prediction (RR-BLUP) is based on the assumptions that SNP marker effects are normally distributed, are uncorrelated, and have equal variances. We propose DAIRRy-BLUP, a parallel, Distributed-memory RR-BLUP implementation, based on single-trait observations (y), that uses the Average Information algorithm for restricted maximum-likelihood estimation of the variance components. The goal of DAIRRy-BLUP is to enable the analysis of large-scale data sets to provide more accurate estimates of marker effects and breeding values. A distributed-memory framework is required since the dimensionality of the problem, determined by the number of SNP markers, can become too large to be analyzed by a single computing node. Initial results show that DAIRRy-BLUP enables the analysis of very large-scale data sets (up to 1,000,000 individuals and 360,000 SNPs) and indicate that increasing the number of phenotypic and genotypic records has a more significant effect on the prediction accuracy than increasing the density of SNP arrays.  相似文献   

14.
Genome-based prediction of genetic values is expected to overcome shortcomings that limit the application of QTL mapping and marker-assisted selection in plant breeding. Our goal was to study the genome-based prediction of test cross performance with genetic effects that were estimated using genotypes from the preceding breeding cycle. In particular, our objectives were to employ a ridge regression approach that approximates best linear unbiased prediction of genetic effects, compare cross validation with validation using genetic material of the subsequent breeding cycle, and investigate the prospects of genome-based prediction in sugar beet breeding. We focused on the traits sugar content and standard molasses loss (ML) and used a set of 310 sugar beet lines to estimate genetic effects at 384 SNP markers. In cross validation, correlations >0.8 between observed and predicted test cross performance were observed for both traits. However, in validation with 56 lines from the next breeding cycle, a correlation of 0.8 could only be observed for sugar content, for standard ML the correlation reduced to 0.4. We found that ridge regression based on preliminary estimates of the heritability provided a very good approximation of best linear unbiased prediction and was not accompanied with a loss in prediction accuracy. We conclude that prediction accuracy assessed with cross validation within one cycle of a breeding program can not be used as an indicator for the accuracy of predicting lines of the next cycle. Prediction of lines of the next cycle seems promising for traits with high heritabilities.  相似文献   

15.
Genomic Selection (GS) is a new breeding method in which genome-wide markers are used to predict the breeding value of individuals in a breeding population. GS has been shown to improve breeding efficiency in dairy cattle and several crop plant species, and here we evaluate for the first time its efficacy for breeding inbred lines of rice. We performed a genome-wide association study (GWAS) in conjunction with five-fold GS cross-validation on a population of 363 elite breeding lines from the International Rice Research Institute''s (IRRI) irrigated rice breeding program and herein report the GS results. The population was genotyped with 73,147 markers using genotyping-by-sequencing. The training population, statistical method used to build the GS model, number of markers, and trait were varied to determine their effect on prediction accuracy. For all three traits, genomic prediction models outperformed prediction based on pedigree records alone. Prediction accuracies ranged from 0.31 and 0.34 for grain yield and plant height to 0.63 for flowering time. Analyses using subsets of the full marker set suggest that using one marker every 0.2 cM is sufficient for genomic selection in this collection of rice breeding materials. RR-BLUP was the best performing statistical method for grain yield where no large effect QTL were detected by GWAS, while for flowering time, where a single very large effect QTL was detected, the non-GS multiple linear regression method outperformed GS models. For plant height, in which four mid-sized QTL were identified by GWAS, random forest produced the most consistently accurate GS models. Our results suggest that GS, informed by GWAS interpretations of genetic architecture and population structure, could become an effective tool for increasing the efficiency of rice breeding as the costs of genotyping continue to decline.  相似文献   

16.
Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker–trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.  相似文献   

17.
Accuracy of genomic selection in European maize elite breeding populations   总被引:1,自引:0,他引:1  
Genomic selection is a promising breeding strategy for rapid improvement of complex traits. The objective of our study was to investigate the prediction accuracy of genomic breeding values through cross validation. The study was based on experimental data of six segregating populations from a half-diallel mating design with 788 testcross progenies from an elite maize breeding program. The plants were intensively phenotyped in multi-location field trials and fingerprinted with 960 SNP markers. We used random regression best linear unbiased prediction in combination with fivefold cross validation. The prediction accuracy across populations was higher for grain moisture (0.90) than for grain yield (0.58). The accuracy of genomic selection realized for grain yield corresponds to the precision of phenotyping at unreplicated field trials in 3–4 locations. As for maize up to three generations are feasible per year, selection gain per unit time is high and, consequently, genomic selection holds great promise for maize breeding programs.  相似文献   

18.
Genomic selection (GS) is a modern breeding approach where genome-wide single-nucleotide polymorphism (SNP) marker profiles are simultaneously used to estimate performance of untested genotypes. In this study, the potential of genomic selection methods to predict testcross performance for hybrid canola breeding was applied for various agronomic traits based on genome-wide marker profiles. A total of 475 genetically diverse spring-type canola pollinator lines were genotyped at 24,403 single-copy, genome-wide SNP loci. In parallel, the 950 F1 testcross combinations between the pollinators and two representative testers were evaluated for a number of important agronomic traits including seedling emergence, days to flowering, lodging, oil yield and seed yield along with essential seed quality characters including seed oil content and seed glucosinolate content. A ridge-regression best linear unbiased prediction (RR-BLUP) model was applied in combination with 500 cross-validations for each trait to predict testcross performance, both across the whole population as well as within individual subpopulations or clusters, based solely on SNP profiles. Subpopulations were determined using multidimensional scaling and K-means clustering. Genomic prediction accuracy across the whole population was highest for seed oil content (0.81) followed by oil yield (0.75) and lowest for seedling emergence (0.29). For seed yieId, seed glucosinolate, lodging resistance and days to onset of flowering (DTF), prediction accuracies were 0.45, 0.61, 0.39 and 0.56, respectively. Prediction accuracies could be increased for some traits by treating subpopulations separately; a strategy which only led to moderate improvements for some traits with low heritability, like seedling emergence. No useful or consistent increase in accuracy was obtained by inclusion of a population substructure covariate in the model. Testcross performance prediction using genome-wide SNP markers shows considerable potential for pre-selection of promising hybrid combinations prior to resource-intensive field testing over multiple locations and years.  相似文献   

19.

Background

All progeny-tested bucks from the two main French dairy goat breeds (Alpine and Saanen) were genotyped with the Illumina goat SNP50 BeadChip. The reference population consisted of 677 bucks and 148 selection candidates. With the two-step approach based on genomic best linear unbiased prediction (GBLUP), prediction accuracy of candidates did not outperform that of the parental average. We investigated a GBLUP method based on a single-step approach, with or without blending of the two breeds in the reference population.

Methods

Three models were used: (1) a multi-breed model, in which Alpine and Saanen breeds were considered as a single breed; (2) a within-breed model, with separate genomic evaluation per breed; and (3) a multiple-trait model, in which a trait in the Alpine was assumed to be correlated to the same trait in the Saanen breed, using three levels of between-breed genetic correlations (ρ): ρ = 0, ρ = 0.99, or estimated ρ. Quality of genomic predictions was assessed on progeny-tested bucks, by cross-validation of the Pearson correlation coefficients for validation accuracy and the regression coefficients of daughter yield deviations (DYD) on genomic breeding values (GEBV). Model-based estimates of average accuracy were calculated on the 148 candidates.

Results

The genetic correlations between Alpine and Saanen breeds were highest for udder type traits, ranging from 0.45 to 0.76. Pearson correlations with the single-step approach were higher than previously reported with a two-step approach. Correlations between GEBV and DYD were similar for the three models (within-breed, multi-breed and multiple traits). Regression coefficients of DYD on GEBV were greater with the within-breed model and multiple-trait model with ρ = 0.99 than with the other models. The single-step approach improved prediction accuracy of candidates from 22 to 37% for both breeds compared to the two-step method.

Conclusions

Using a single-step approach with GBLUP, prediction accuracy of candidates was greater than that based on parent average of official evaluations and accuracies obtained with a two-step approach. Except for regression coefficients of DYD on GEBV, there were no significant differences between the three models.  相似文献   

20.
The genome sequence of apple (Malus×domestica Borkh.) was published more than a year ago, which helped develop an 8K SNP chip to assist in implementing genomic selection (GS). In apple breeding programmes, GS can be used to obtain genomic breeding values (GEBV) for choosing next-generation parents or selections for further testing as potential commercial cultivars at a very early stage. Thus GS has the potential to accelerate breeding efficiency significantly because of decreased generation interval or increased selection intensity. We evaluated the accuracy of GS in a population of 1120 seedlings generated from a factorial mating design of four females and two male parents. All seedlings were genotyped using an Illumina Infinium chip comprising 8,000 single nucleotide polymorphisms (SNPs), and were phenotyped for various fruit quality traits. Random-regression best liner unbiased prediction (RR-BLUP) and the Bayesian LASSO method were used to obtain GEBV, and compared using a cross-validation approach for their accuracy to predict unobserved BLUP-BV. Accuracies were very similar for both methods, varying from 0.70 to 0.90 for various fruit quality traits. The selection response per unit time using GS compared with the traditional BLUP-based selection were very high (>100%) especially for low-heritability traits. Genome-wide average estimated linkage disequilibrium (LD) between adjacent SNPs was 0.32, with a relatively slow decay of LD in the long range (r(2)?=?0.33 and 0.19 at 100 kb and 1,000 kb respectively), contributing to the higher accuracy of GS. Distribution of estimated SNP effects revealed involvement of large effect genes with likely pleiotropic effects. These results demonstrated that genomic selection is a credible alternative to conventional selection for fruit quality traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号