首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonstructural protein 5A (NS5A) of hepatitis C virus (HCV) plays multiple and diverse roles in the viral lifecycle, and is currently recognized as a novel target for anti-viral therapy. To establish an HCV cell culture system with NS5A of various strains, recombinant viruses were generated by replacing NS5A of strain JFH-1 with those of strains of genotypes 1 (H77; 1a and Con1; 1b) and 2 (J6CF; 2a and MA; 2b). All these recombinant viruses were capable of replication and infectious virus production. The replacement of JFH-1 NS5A with those of genotype 1 strains resulted in similar or slightly reduced virus production, whereas replacement with those of genotype 2 strains enhanced virus production as compared with JFH-1 wild-type. A single cycle virus production assay with a CD81-negative cell line revealed that the efficient virus production elicited by replacement with genotype 2 strains depended on enhanced viral assembly, and that substitutions in the C-terminus of NS5A were responsible for this phenotype. Pulse-chase assays revealed that these substitutions in the C-terminus of NS5A were possibly associated with accelerated cleavage kinetics at the NS5A–NS5B site. Using this cell culture system with NS5A-substituted recombinant viruses, the anti-viral effects of an NS5A inhibitor were then examined. A 300- to 1000-fold difference in susceptibility to the inhibitor was found between strains of genotypes 1 and 2. This system will facilitate not only a better understanding of strain-specific roles of NS5A in the HCV lifecycle, but also enable the evaluation of genotype and strain dependency of NS5A inhibitors.  相似文献   

2.
Hepatitis C virus infection is a major public health problem because of an estimated 170 million carriers worldwide. Genotype 1b is the major subtype of HCV in many countries and is resistant to interferon therapy. Study of the viral life cycle is important for understanding the mechanisms of interferon resistance of genotype 1b HCV strains. For such studies, genotype 1b HCV strains that can replicate and produce infectious virus particles in cultured cells are required. In the present study, we isolated HCV cDNA, which we named the NC1 strain, from a patient with acute severe hepatitis. Subgenomic replicon experiments revealed that several mutations enhanced the colony-formation efficiency of the NC1 replicon. The full-length NC1 genome with these adaptive mutations could replicate in cultured cells and produce infectious virus particles. The density gradient profile and morphology of the secreted virus particles were similar to those reported for the JFH-1 virus. Further introduction of a combination of mutations of the NS3 and NS5a regions into the NC1 mutants further enhanced secreted core protein levels and infectious virus titers in the culture medium of HCV-RNA-transfected cells. However, the virus infection efficiency was not sufficient for autonomous virus propagation in cultured cells. In conclusion, we established a novel cell culture-adapted genotype 1b HCV strain, termed NC1, which can produce infectious virus when the viral RNA is transfected into cells. This system provides an important opportunity for studying the life cycle of the genotype 1b HCV.  相似文献   

3.
Although the recently developed infectious hepatitis C virus system that uses the JFH-1 clone enables the study of whole HCV viral life cycles, limited particular HCV strains have been available with the system. In this study, we isolated another genotype 2a HCV cDNA, the JFH-2 strain, from a patient with fulminant hepatitis. JFH-2 subgenomic replicons were constructed. HuH-7 cells transfected with in vitro transcribed replicon RNAs were cultured with G418, and selected colonies were isolated and expanded. From sequencing analysis of the replicon genome, several mutations were found. Some of the mutations enhanced JFH-2 replication; the 2217AS mutation in the NS5A interferon sensitivity-determining region exhibited the strongest adaptive effect. Interestingly, a full-length chimeric or wild-type JFH-2 genome with the adaptive mutation could replicate in Huh-7.5.1 cells and produce infectious virus after extensive passages of the virus genome-replicating cells. Virus infection efficiency was sufficient for autonomous virus propagation in cultured cells. Additional mutations were identified in the infectious virus genome. Interestingly, full-length viral RNA synthesized from the cDNA clone with these adaptive mutations was infectious for cultured cells. This approach may be applicable for the establishment of new infectious HCV clones.  相似文献   

4.
The unique properties of the hepatitis C virus (HCV) JFH1 isolate have made it possible to produce and study HCV in an infectious cell culture system. However, relatively low virus titers restrict some of the uses of this system and preparing infectious chimeric reporter viruses have been difficult. In this study, we report cell culture-adapted mutations in wild-type JFH1 yielding higher titers of infectious particles of both JFH1 and chimeric JFH1 viruses carrying reporter genes. Sequencing analyses determined that ten of the sixteen nonsynonymous mutations were in the NS5A region. Individual viruses harboring specific adaptive mutations were prepared and studied. The mutations in the NS5A region, which included all three domains, were most effective in increasing infectious virus production. Insertion of two reporter genes in JFH1 without the adaptive mutations ablated the production of infectious HCV particles. However, the introduction of specific adaptive mutations in the NS5A region permitted reporter genes, Renilla luciferase (Rluc) and EGFP, to be introduced into JHF1 to produce chimeric HCV-NS5A-EGFP and HCV-NS5A-Rluc reporter viruses at relatively high titers of infectious virus. The quantity of hyperphosphorylated NS5A (p58) was decreased in the adapted JFH1 compared wild type JFH1 and is likely be involved in increased production of infectious virus based on previous studies of p58. The JFH1-derived mutant viruses and chimeric reporter viruses described here provide new tools for studying HCV biology, identifying HCV antivirals, and enable new ways of engineering additional infectious chimeric viruses.  相似文献   

5.
To establish a cell culture system for chimeric hepatitis C virus (HCV) genotype 2b, we prepared a chimeric construct harboring the 5' untranslated region (UTR) to the E2 region of the MA strain (genotype 2b) and the region of p7 to the 3' UTR of the JFH-1 strain (genotype 2a). This chimeric RNA (MA/JFH-1.1) replicated and produced infectious virus in Huh7.5.1 cells. Replacement of the 5' UTR of this chimera with that from JFH-1 (MA/JFH-1.2) enhanced virus production, but infectivity remained low. In a long-term follow-up study, we identified a cell culture-adaptive mutation in the core region (R167G) and found that it enhanced virus assembly. We previously reported that the NS3 helicase (N3H) and the region of NS5B to 3' X (N5BX) of JFH-1 enabled replication of the J6CF strain (genotype 2a), which could not replicate in cells. To reduce JFH-1 content in MA/JFH-1.2, we produced a chimeric viral genome for MA harboring the N3H and N5BX regions of JFH-1, combined with a JFH-1 5' UTR replacement and the R167G mutation (MA/N3H+N5BX-JFH1/R167G). This chimeric RNA replicated efficiently, but virus production was low. After the introduction of four additional cell culture-adaptive mutations, MA/N3H+N5BX-JFH1/5am produced infectious virus efficiently. Using this chimeric virus harboring minimal regions of JFH-1, we analyzed interferon sensitivity and found that this chimeric virus was more sensitive to interferon than JFH-1 and another chimeric virus containing more regions from JFH-1 (MA/JFH-1.2/R167G). In conclusion, we established an HCV genotype 2b cell culture system using a chimeric genome harboring minimal regions of JFH-1. This cell culture system may be useful for characterizing genotype 2b viruses and developing antiviral strategies.  相似文献   

6.
Kim CS  Keum SJ  Jang SK 《PloS one》2011,6(8):e22808

Background

We previously reported infectious HCV clones that contain the convenient reporters, green fluorescent protein (GFP) and Renilla luciferase (Rluc), in the NS5a-coding sequence. Although these viruses were useful in monitoring viral proliferation and screening of anti-HCV drugs, the infectivity and yield of the viruses were low.

Methodology/Principal Findings

In order to obtain a highly efficient HCV cultivation system, we transfected Huh7.5.1 cells [1] with JFH 5a-GFP RNA and then cultivated cells for 20 days. We found a highly infectious HCV clone containing two cell culture-adapted mutations. Two cell culture-adapted mutations which were responsible for the increased viral infectivity were located in E2 and p7 protein coding regions. The viral titer of the variant was ∼100-fold higher than that of the parental virus. The mutation in the E2 protein increased the viability of virus at 37°C by acquiring prolonged interaction capability with a HCV receptor CD81. The wild-type and p7-mutated virus had a half-life of ∼2.5 to 3 hours at 37°C. In contrast, the half-life of viruses, which contained E2 mutation singly and combination with the p7 mutation, was 5 to 6 hours at 37°C. The mutation in the p7 protein, either singly or in combination with the E2 mutation, enhanced infectious virus production about 10–50-fold by facilitating an early step of virion production.

Conclusion/Significance

The mutation in the E2 protein generated by the culture system increases virion viability at 37°C. The adaptive mutation in the p7 protein facilitates an earlier stage of virus production, such as virus assembly and/or morphogenesis. These reporter-containing HCV viruses harboring adaptive mutations are useful in investigations of the viral life cycle and for developing anti-viral agents against HCV.  相似文献   

7.
Hepatitis C virus (HCV) infection is a leading cause of chronic liver diseases. Progress in the HCV field was greatly enhanced by constructing infectious cDNA clone of JFH-1. Since then, JFH-1-based intra- and intergenotypic recombinants have been developed, and this permitted the study of vaccines and antiviral inhibitors for all genotypes. Recently, highly efficient HCV culture systems have been established by using consensus sequence-based clones. We developed a novel strategy to construct infectious HCV cDNA clone by combining functional screening of sequences directly from a genotype 2a clinical isolate (PR63) and cell culture adaptation. Using JFH-1 cDNA as the starting backbone, we sequentially replaced the JFH-1 fragments with a sequence from the pools of PR63 sequences. Through engineering adaptive mutations that improve HCV infectivity, we finally established a full-length cell culture-derived infectious clone of PR63, named PR63cc, that could efficiently produce virus particles in Huh7-derived cells, with peak titers of 1.6 × 105 focus-forming units/ml. The PR63cc could be neutralized by an anti-E2 antibody and inhibited by antiviral agents but appeared more resistant to an NS5A inhibitor than JFH-1. In summary, we developed a new approach to construct an infectious HCV cDNA clone that can produce viruses efficiently in cell culture. This approach could be applied to other viral isolates, with potential implications for individualized treatments of HCV patients.  相似文献   

8.
We have previously reported that the NS3 helicase (N3H) and NS5B-to-3′X (N5BX) regions are important for the efficient replication of hepatitis C virus (HCV) strain JFH-1 and viral production in HuH-7 cells. In the current study, we investigated the relationships between HCV genome replication, virus production, and the structure of N5BX. We found that the Q377R, A450S, S455N, R517K, and Y561F mutations in the NS5B region resulted in up-regulation of J6CF NS5B polymerase activity in vitro. However, the activation effects of these mutations on viral RNA replication and virus production with JFH-1 N3H appeared to differ. In the presence of the N3H region and 3′ untranslated region (UTR) of JFH-1, A450S, R517K, and Y561F together were sufficient to confer HCV genome replication activity and virus production ability to J6CF in cultured cells. Y561F was also involved in the kissing-loop interaction between SL3.2 in the NS5B region and SL2 in the 3′X region. We next analyzed the 3′ structure of HCV genome RNA. The shorter polyU/UC tracts of JFH-1 resulted in more efficient RNA replication than J6CF. Furthermore, 9458G in the JFH-1 variable region (VR) was responsible for RNA replication activity because of its RNA structures. In conclusion, N3H, high polymerase activity, enhanced kissing-loop interactions, and optimal viral RNA structure in the 3′UTR were required for J6CF replication in cultured cells.  相似文献   

9.
Hepatitis C virus (HCV) infection is dependent on at least three coreceptors: CD81, scavenger receptor BI (SR-BI), and claudin-1. The mechanism of how these molecules coordinate HCV entry is unknown. In this study we demonstrate that a cell culture-adapted JFH-1 mutant, with an amino acid change in E2 at position 451 (G451R), has a reduced dependency on SR-BI. This altered receptor dependency is accompanied by an increased sensitivity to neutralization by soluble CD81 and enhanced binding of recombinant E2 to cell surface-expressed and soluble CD81. Fractionation of HCV by density gradient centrifugation allows the analysis of particle-lipoprotein associations. The cell culture-adapted mutation alters the relationship between particle density and infectivity, with the peak infectivity occurring at higher density than the parental virus. No association was observed between particle density and SR-BI or CD81 coreceptor dependence. JFH-1 G451R is highly sensitive to neutralization by gp-specific antibodies, suggesting increased epitope exposure at the virion surface. Finally, an association was observed between JFH-1 particle density and sensitivity to neutralizing antibodies (NAbs), suggesting that lipoprotein association reduces the sensitivity of particles to NAbs. In summary, mutation of E2 at position 451 alters the relationship between particle density and infectivity, disrupts coreceptor dependence, and increases virion sensitivity to receptor mimics and NAbs. Our data suggest that a balanced interplay between HCV particles, lipoprotein components, and viral receptors allows the evasion of host immune responses.  相似文献   

10.
Hepatitis C virus (HCV) cell culture system with JFH-1 strain and HuH-7 cells enabled us to produce infectious HCV particles in vitro, and such system is useful to explore the anti-HCV compounds and to develop the vaccine against HCV. In the present study, we describe the derivation of a cell line that permits improved production of HCV particles. Specifically, we characterized several subclones that were isolated from the original HuH-7 cell line by limiting dilution. These HuH-7 subclones displayed a notable range of HCV production levels following transfection by full-genome JFH-1 RNA. Among these subclones, HuH-7T1 produced HCV more efficiently than other subclones and Huh-7.5.1 that is known to be highly permissive for HCV replication. Upon transfection with full-genome RNA, HCV production was increased ten-fold in HuH-7T1 compared to Huh-7.5.1. This increase in viral production correlated with increased efficiency of intracellular infectious virus production. Furthermore, HCV replication did not induce cell cycle arrest in HuH-7T1, whereas it did in Huh-7.5.1. Consequently, the use of HuH-7T1 as host cells could provide increased population of HCV-positive cells and elevated viral titer. In conclusion, we isolated a HuH-7 subclone, HuH-7T1, that supports efficient HCV production. High efficiency of intracellular infectious virus production and evasion of cell cycle arrest were important for this phenotype. We expect that the use of this cell line will facilitate analysis of the underlying mechanisms for HCV particle assembly and the cell cycle arrest caused by HCV.  相似文献   

11.
The JFH-1 strain of hepatitis C virus (HCV) is a genotype 2a strain that can replicate autonomously in Huh7 cells. The J6 strain is also a genotype 2a strain, but its full genomic RNA does not replicate in Huh7 cells. However, chimeric J6/JFH-1 RNA that has J6 structural-protein-coding regions and JFH-1 nonstructural-protein-coding regions can replicate autonomously and produce infectious HCV particles. In order to determine the mechanisms underlying JFH-1 RNA replication, we constructed various J6/JFH-1 chimeras and tested their RNA replication and virus particle production abilities in Huh7 cells. Via subgenomic-RNA-replication assays, we found that both the JFH-1 NS5B-to-3'X (N5BX) and the NS3 helicase (N3H) regions are important for the replication of the J6CF replicon. We applied these results to full-length genomic RNA replication and analyzed replication using Northern blotting. We found that a chimeric J6 clone with JFH-1 N3H and N5BX could replicate autonomously but that a chimeric J6 clone with only JFH-1 N5BX had no replication ability. Finally, we tested the virus production abilities of these clones and found that a chimeric J6 clone with JFH-1 N3H and N5BX could produce infectious HCV particles. In conclusion, the JFH-1 NS3 helicase and NS5B-to-3'X regions are important for efficient replication and virus particle formation of HCV genotype 2a strains.  相似文献   

12.
Jiang J  Luo G 《Journal of virology》2012,86(17):8987-8997
Recent genetic studies suggested that viral nonstructural (NS) proteins play important roles in morphogenesis of flaviviruses, particularly hepatitis C virus (HCV). Adaptive and compensatory mutations occurring in different NS proteins were demonstrated to promote HCV production in cell culture. However, the underlying molecular mechanism of NS proteins in HCV morphogenesis is poorly understood. We have isolated a cell culture-adapted HCV of genotype 2a (JFH1) which grew to an infectious titer 3 orders of magnitude higher than that of wild-type virus. Sequence analysis identified a total of 16 amino acid mutations in core (C), E1, NS2, NS3, NS5A, and NS5B, with the majority of mutations clustered in NS5A. Reverse genetic analysis of these mutations individually or in different combinations demonstrated that amino acid mutations in NS2 and NS5A markedly enhanced HCV production. Additionally, mutations in C, E1, NS3, and NS5B synergistically promoted HCV production in the background of NS2 and NS5A mutations. Adaptive mutations in NS5A domains I, II, and III independently enhanced HCV production, suggesting that all three domains of NS5A are important for HCV morphogenesis. More importantly, adaptive mutations greatly enhanced physical interactions among HCV structural and NS proteins, as determined by studies with coimmunoprecipitation and mammalian two-hybrid assays. Collectively, these findings demonstrate that adaptive mutations can enhance specific protein-protein interactions among viral structural and NS proteins and therefore promote the assembly of infectious HCV particles.  相似文献   

13.
Hepatitis C virus (HCV) infection causes chronic liver disease and is a worldwide health problem. Despite ever-increasing demand for knowledge on viral replication and pathogenesis, detailed analysis has been hampered by a lack of efficient viral culture systems. We isolated HCV genotype 2a strain JFH-1 from a patient with fulminant hepatitis. This strain replicates efficiently in Huh7 cells. Efficient replication and secretion of recombinant viral particles can be obtained in cell culture by transfection of in vitro-transcribed full-length JFH-1 RNA into Huh7 cells. JFH-1 virus generated in cell culture is infectious for both naive Huh7 cells and chimpanzees. The efficiency of viral production and infectivity of generated virus is substantially improved with permissive cell lines. This protocol describes how to use this system, which provides a powerful tool for studying viral life cycle and for the construction of antiviral strategies and the development of effective vaccines. Viral particles can be obtained in 12 days with this protocol.  相似文献   

14.
In 2005, the first robust hepatitis C virus (HCV) infectious cell culture system was developed based on the HCV genotype 2a JFH-1 molecular clone and the human-derived hepatoma cell line Huh7. Although much effort has been made to dissect and expand the repertoire of JFH-1-derived clones, less attention has been given to the host cell despite the intriguing facts that thus far only Huh7 cells have been found to be highly permissive for HCV infection and furthermore only a limited number of Huh7 cell lines/stocks appear to be fully permissive. As such, we compiled a panel of Huh7 lines from disparate sources and evaluated their permissiveness for HCV infection. We found that although Huh7 lines from different laboratories do vary in morphology and cell growth, the majority (8 out of 9) were highly permissive for infection, as demonstrated by robust HCV RNA and de novo infectious virion production following infection. While HCV RNA levels achieved in the 8 permissive cell lines were relatively equivalent, three Huh7 lines demonstrated higher infectious virion production suggesting these cell lines more efficiently support post-replication event(s) in the viral life cycle. Consistent with previous studies, the single Huh7 line found to be relatively resistant to infection demonstrated a block in HCV entry. These studies not only suggest that the majority of Huh7 cell lines in different laboratories are in fact highly permissive for HCV infection, but also identify phenotypically distinct Huh7 lines, which may facilitate studies investigating the cellular determinants of HCV infection.  相似文献   

15.
S P Day  P Murphy  E A Brown    S M Lemon 《Journal of virology》1992,66(11):6533-6540
Passage of human hepatitis A virus (HAV) in cell culture results in attenuation of the virus as well as progressive increases in the efficiency of virus replication in cell culture. Because the presence of identical mutations within the 5' nontranslated regions (5'NTRs) of several independently isolated cell culture-adapted HAV variants suggests that the 5'NTR may play a role in determining this change in virus host range, we constructed chimeric infectious cDNA clones in which portions of the 5'NTR of cell culture-adapted HM175/p35 virus were replaced with cDNA from either wild-type virus (HM175/wt) or a second independently isolated, but closely related cell culture-adapted virus (HM175/p16). Substitution of the complete 5'NTR of HM175/p35 with the 5'NTR of HM175/wt resulted in virus with very small replication foci in continuous African green monkey kidney (BS-C-1) cells, indicating that 5'NTR mutations in HM175/p35 virus are required for optimal growth in these cells. A chimera with the 5'NTR sequence of HM175/p16 retained the large foci of HM175/p35 virus, while the growth properties of other viruses having chimeric 5'NTR sequences indicated that mutations at bases 152 and/or 203 to 207 enhance replication in BS-C-1 cells. These findings were confirmed in one-step growth experiments, which also indicated that radioimmunofocus size is a valid measure of virus replication competence in cell culture. An additional mutation at base 687 of HM175/p16 had only a minor role in enhancing growth. In contrast to their effect in BS-C-1 cells, these 5'NTR mutations did not enhance replication in continuous fetal rhesus monkey kidney (FRhK-4) cells. Thus, mutations at bases 152 and/or 203 to 207 enhance the replication of HAV in a highly host cell-specific fashion.  相似文献   

16.
Kim S  Welsch C  Yi M  Lemon SM 《Journal of virology》2011,85(13):6645-6656
Although hepatitis C virus (HCV) assembly remains incompletely understood, recent studies with the genotype 2a JFH-1 strain suggest that it is dependent upon the phosphorylation of Ser residues near the C terminus of NS5A, a multifunctional nonstructural protein. Since genotype 1 viruses account for most HCV disease yet differ substantially in sequence from that of JFH-1, we studied the role of NS5A in the production of the H77S virus. While less efficient than JFH-1, genotype 1a H77S RNA produces infectious virus when transfected into permissive Huh-7 cells. The exchange of complete NS5A sequences between these viruses was highly detrimental to replication, while exchanges of the C-terminal domain III sequence (46% amino acid sequence identity) were well tolerated, with little effect on RNA synthesis. Surprisingly, the placement of the H77S domain III sequence into JFH-1 resulted in increased virus yields; conversely, H77S yields were reduced by the introduction of domain III from JFH-1. These changes in infectious virus yield correlated well with changes in the abundance of NS5A in RNA-transfected cells but not with RNA replication or core protein expression levels. Alanine replacement mutagenesis of selected Ser and Thr residues in the C-terminal domain III sequence revealed no single residue to be essential for infectious H77S virus production. However, virus production was eliminated by Ala substitutions at multiple residues and could be restored by phosphomimetic Asp substitutions at these sites. Thus, despite low overall sequence homology, the production of infectious virus is regulated similarly in JFH-1 and H77S viruses by a conserved function associated with a C-terminal Ser/Thr cluster in domain III of NS5A.  相似文献   

17.
We screened for hepatitis C virus (HCV) inhibitors using the JFH-1 viral culture system and found that selective estrogen receptor modulators (SERMs), such as tamoxifen, clomifene, raloxifene, and other estrogen receptor α (ERα) antagonists, inhibited HCV infection. Treatment with SERMs for the first 2 h and treatment 2–24 h after viral inoculation reduced the production of HCV RNA. Treating persistently JFH-1 infected cells with SERMs resulted in a preferential inhibition of extracellular HCV RNA compared to intracellular HCV RNA. When we treated two subgenomic replicon cells, which harbor HCV genome genotype 2a (JFH-1) or genotype 1b, SERMs reduced HCV genome copies and viral protein NS5A. SERMs inhibited the entry of HCV pseudo-particle (HCVpp) genotypes 1a, 1b, 2a, 2b and 4 but did not inhibit vesicular stomatitis virus (VSV) entry. Further experiment using HCVpp indicated that tamoxifen affected both viral binding to cell and post-binding events including endocytosis. Taken together, SERMs seemed to target multiple steps of HCV viral life cycle: attachment, entry, replication, and post replication events. SERMs may be potential candidates for the treatment of HCV infection.  相似文献   

18.
Hepatitis C virus (HCV) establishes persistent infections and leads to chronic liver disease. It only recently became possible to study the entire HCV life cycle due to the ability of a unique cloned patient isolate (JFH-1) to produce infectious particles in tissue culture. However, despite efficient RNA replication, yields of infectious virus particles remain modest. This presents a challenge for large-scale tissue culture efforts, such as inhibitor screening. Starting with a J6/JFH-1 chimeric virus, we used serial passaging to generate a virus with substantially enhanced infectivity and faster infection kinetics compared to the parental stock. The selected virus clone possessed seven novel amino acid mutations. We analyzed the contribution of individual mutations and identified three specific mutations, core K78E, NS2 W879R, and NS4B V1761L, which were necessary and sufficient for the adapted phenotype. These three mutations conferred a 100-fold increase in specific infectivity compared to the parental J6/JFH-1 virus, and media collected from cells infected with the adapted virus yielded infectious titers as high as 1 × 10(8) 50% tissue culture infective doses (TCID(50))/ml. Further analyses indicated that the adapted virus has longer infectious stability at 37°C than the wild type. Given that the adapted phenotype resulted from a combination of mutations in structural and nonstructural proteins, these data suggest that the improved viral titers are likely due to differences in virus particle assembly that result in significantly improved infectious particle stability. This adapted virus will facilitate further studies of the HCV life cycle, virus structure, and high-throughput drug screening.  相似文献   

19.
Hepatitis C virus (HCV) core protein has shown to be localized in the detergent-resistant membrane (DRM), which is distinct from the classical raft fraction including caveolin, although the biological significance of the DRM localization of the core protein has not been determined. The HCV core protein is cleaved off from a precursor polyprotein at the lumen side of Ala(191) by signal peptidase and is then further processed by signal peptide peptidase (SPP) within the transmembrane region. In this study, we examined the role of SPP in the localization of the HCV core protein in the DRM and in viral propagation. The C terminus of the HCV core protein cleaved by SPP in 293T cells was identified as Phe(177) by mass spectrometry. Mutations introduced into two residues (Ile(176) and Phe(177)) upstream of the cleavage site of the core protein abrogated processing by SPP and localization in the DRM fraction. Expression of a dominant-negative SPP or treatment with an SPP inhibitor, L685,458, resulted in reductions in the levels of processed core protein localized in the DRM fraction. The production of HCV RNA in cells persistently infected with strain JFH-1 was impaired by treatment with the SPP inhibitor. Furthermore, mutant JFH-1 viruses bearing SPP-resistant mutations in the core protein failed to propagate in a permissive cell line. These results suggest that intramembrane processing of HCV core protein by SPP is required for the localization of the HCV core protein in the DRM and for viral propagation.  相似文献   

20.
A unique hepatitis C virus (HCV) strain JFH-1 has been shown to replicate efficiently in cell culture with production of infectious HCV. We previously developed a DNA expression system containing HCV cDNA flanked by two self-cleaving ribozymes to generate HCV particles in cell culture. In this study, we produced HCV particles of various genotypes, including 1a (H77), 1b (CG1b), and 2a (J6 and JFH-1), in the HCV-ribozyme system. The constructs also contain the secreted alkaline phosphatase gene to control for transfection efficiency and the effects of culture conditions. After transfection into the Huh7-derived cell line Huh7.5.1, continuous HCV replication and secretion were confirmed by the detection of HCV RNA and core antigen in the culture medium. HCV replication levels of strains H77, CG1b, and J6 were comparable, whereas the JFH-1 strain replicates at a substantially higher level than the other strains. To evaluate the infectivity in vitro, the culture medium of JFH-1-transfected cells was inoculated into naive Huh7.5.1 cells. HCV proteins were detected by immunofluorescence 3 days after inoculation. To evaluate the infectivity in vivo, the culture medium from HCV genotype 1b-transfected cells was inoculated into a chimpanzee and caused a typical course of HCV infection. The HCV 1b propagated in vitro and in vivo had sequences identical to those of the HCV genomic cDNA used for cell culture transfection. The development of culture systems for production of various HCV genotypes provides a valuable tool not only to study the replication and pathogenesis of HCV but also to screen for antivirals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号