首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.  相似文献   

2.
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.  相似文献   

3.
Smooth muscle contraction regulated by myosin light chain phosphorylation is also regulated at the thin-filament level. Tropomyosin, a thin-filament regulatory protein, regulates contraction by modulating actin-myosin interactions. Present investigation shows that acetylcholine induces PKC-mediated and calcium-dependent phosphorylation of tropomyosin in colonic smooth muscle cells. Our data also shows that acetylcholine induces a significant and sustained increase in PKC-mediated association of tropomyosin with PKCalpha in the particulate fraction of colonic smooth muscle cells. Immunoblotting studies revealed that in colonic smooth muscle cells, there is no significant change in the amount of tropomyosin or actin in particulate fraction in response to acetylcholine, indicating that the increased association of tropomyosin with PKCalpha in the particulate fraction may be due to acetylcholine-induced translocation of PKCalpha to the particulate fraction. To investigate whether the association of PKCalpha with tropomyosin was due to a direct interaction, we performed in vitro direct binding assay. Tropomyosin cDNA amplified from colonic smooth muscle mRNA was expressed as GST-tropomyosin fusion protein. In vitro binding experiments using GST-tropomyosin and recombinant PKCalpha indicated direct interaction of tropomyosin with PKCalpha. PKC-mediated phosphorylation of tropomyosin and direct interaction of PKCalpha with tropomyosin suggest that tropomyosin could be a substrate for PKC. Phosphorylation of tropomyosin may aid in holding the slided tropomyosin away from myosin binding sites on actin, resulting in actomyosin interaction and sustained contraction.  相似文献   

4.
Actin polymerization has been shown to occur in tracheal smooth muscle tissues and cells in response to contractile stimulation, and there is evidence that the polymerization of actin is required for contraction. In tracheal smooth muscle, agonist-induced actin polymerization is mediated by activation of neuronal Wiskott-Aldrich syndrome protein (N-WASp) and the Arp (actin-related protein) 2/3 complex, and activation of the small GTPase Cdc42 regulates the activation of N-WASp. In the present study, the role of the adapter protein CrkII in the regulation of N-WASp and Cdc42 activation, actin polymerization, and tension development in smooth muscle tissues was evaluated. Stimulation of tracheal smooth muscle tissues with acetylcholine increased the association of CrkII with N-WASp. Plasmids encoding wild type CrkII or a CrkII mutant lacking the SH3 effector-binding ability, CrkII SH3N, were introduced into tracheal smooth muscle tissues, and the tissues were incubated for 2 days to allow for protein expression. Expression of the CrkII SH3N mutant in smooth muscle tissues inhibited the association of CrkII with N-WASp and the activation of Cdc42. The CrkII SH3N mutant also inhibited the increase in the association of N-WASp with Arp2, a major component of the Arp2/3 complex, in response to contractile stimulation, indicating inhibition of N-WASp activation. Expression of the CrkII SH3N mutant also inhibited tension generation and actin polymerization in response to contractile stimulation; however, it did not inhibit myosin light chain phosphorylation. These results suggest that CrkII plays a critical role in the regulation of N-WASp activation, perhaps by regulating the activation of Cdc42, and that it thereby regulates actin polymerization and active tension generation in tracheal smooth muscle. These studies suggest a novel signaling pathway for the regulation of N-WASp activation and active contraction in smooth muscle tissues.  相似文献   

5.
Thin-filament regulation of smooth muscle contraction involves phosphorylation, association, and dissociation of contractile proteins in response to agonist stimulation. Phosphorylation of caldesmon weakens its association with actin leading to actomyosin interaction and contraction. Present data from colonic smooth muscle cells indicate that acetylcholine induced a significant association of caldesmon with PKCalpha and sustained phosphorylation of caldesmon at ser789. Furthermore, acetylcholine induced significant and sustained increase in the association of phospho-caldesmon with heat-shock protein (HSP)27 with concomitant increase in the dissociation of phospho-caldesmon from tropomyosin. At the thin filament level, HSP27 plays a crucial role in acetylcholine-induced association of contractile proteins. Present data from colonic smooth muscle cells transfected with non-phospho-HSP27 mutant cDNA indicate that the absence of phospho-HSP27 inhibits acetylcholine-induced caldesmon phosphorylation. Our results further indicate that the presence of phospho-HSP27 significantly enhances acetylcholine-induced sustained association of phospho-caldesmon with HSP27 with a concomitant increase in acetylcholine-induced dissociation of phospho-caldesmon from tropomyosin. We thus propose a model whereby upon acetylcholine-induced phosphorylation of caldesmon at ser789, the association of phospho-caldesmon (ser789) with phospho-HSP27 results in an essential conformational change leading to dissociation of phospho-caldesmon from tropomyosin. This leads to the sliding of tropomyosin on actin thus exposing the myosin binding sites on actin for actomyosin interaction.  相似文献   

6.
Different interacting signaling modules involving Ca2+/calmodulin-dependent myosin light chain kinase, Ca2+-independent regulatory light chain phosphorylation, myosin phosphatase inhibition, and actin filament-based proteins are proposed as specific cellular mechanisms involved in the regulation of smooth muscle contraction. However, the relative importance of specific modules is not well defined. By using tamoxifen-activated and smooth muscle-specific knock-out of myosin light chain kinase in mice, we analyzed its role in tonic airway smooth muscle contraction. Knock-out of the kinase in both tracheal and bronchial smooth muscle significantly reduced contraction and myosin phosphorylation responses to K+-depolarization and acetylcholine. Kinase-deficient mice lacked bronchial constrictions in normal and asthmatic airways, whereas the asthmatic inflammation response was not affected. These results indicate that myosin light chain kinase acts as a central participant in the contractile signaling module of tonic smooth muscle. Importantly, contractile airway smooth muscles are necessary for physiological and asthmatic airway resistance.  相似文献   

7.
Vinculin localizes to membrane adhesion junctions where it links actin filaments to the extracellular matrix by binding to the integrin-binding protein talin at its head domain (Vh) and to actin filaments at its tail domain (Vt). Vinculin can assume an inactive (closed) conformation in which Vh and Vt bind to each other, masking the binding sites for actin and talin, and an active (open) conformation in which the binding sites for talin and actin are exposed. We hypothesized that the contractile activation of smooth muscle tissues might regulate the activation of vinculin and thereby contribute to the regulation of contractile tension. Stimulation of tracheal smooth muscle tissues with acetylcholine (ACh) induced the recruitment of vinculin to cell membrane and its interaction with talin and increased the phosphorylation of membrane-localized vinculin at the C-terminal Tyr-1065. Expression of recombinant vinculin head domain peptide (Vh) in smooth muscle tissues, but not the talin-binding deficient mutant head domain, VhA50I, inhibited the ACh-induced recruitment of endogenous vinculin to the membrane and the interaction of vinculin with talin and also inhibited vinculin phosphorylation. Expression of Vh peptide also inhibited ACh-induced smooth muscle contraction and inhibited ACh-induced actin polymerization; however, it did not affect myosin light chain phosphorylation, which is necessary for cross-bridge cycling. Inactivation of RhoA inhibited vinculin activation in response to ACh. We conclude that ACh stimulation regulates vinculin activation in tracheal smooth muscle via RhoA and that vinculin activation contributes to the regulation of active tension by facilitating connections between actin filaments and talin-integrin adhesion complexes and by mediating the initiation of actin polymerization.  相似文献   

8.
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.  相似文献   

9.
Nonmuscle myosin light chain kinase (nmMLCK), a multi-functional cytoskeletal protein critical to vascular homeostasis, is highly regulated by tyrosine phosphorylation. We identified multiple novel c-Abl–mediated nmMLCK phosphorylation sites by mass spectroscopy analysis (including Y231, Y464, Y556, Y846) and examined their influence on nmMLCK function and human lung endothelial cell (EC) barrier regulation. Tyrosine phosphorylation of nmMLCK increased kinase activity, reversed nmMLCK-mediated inhibition of Arp2/3-mediated actin polymerization, and enhanced binding to the critical actin-binding phosphotyrosine protein, cortactin. EC challenge with sphingosine 1-phosphate (S1P), a potent barrier-enhancing agonist, resulted in c-Abl and phosphorylated nmMLCK recruitment into caveolin-enriched microdomains, rapid increases in Abl kinase activity, and spatial targeting of c-Abl to barrier-promoting cortical actin structures. Conversely, reduced c-Abl expression in EC (siRNA) markedly attenuated S1P-mediated cortical actin formation, reduced the EC modulus of elasticity (assessed by atomic force microscopy), reduced nmMLCK and cortactin tyrosine phosphorylation, and attenuated S1P-mediated barrier enhancement. These studies indicate an essential role for Abl kinase in vascular barrier regulation via posttranslational modification of nmMLCK and strongly support c-Abl-cortactin-nmMLCK interaction as a novel determinant of cortical actin-based cytoskeletal rearrangement critical to S1P-mediated EC barrier enhancement.  相似文献   

10.
Contractile stimulation induces actin polymerization in smooth muscle tissues and cells, and the inhibition of actin polymerization depresses smooth muscle force development. In the present study, the role of Cdc42 in the regulation of actin polymerization and tension development in smooth muscle was evaluated. Acetylcholine stimulation of tracheal smooth muscle tissues increased the activation of Cdc42. Plasmids encoding wild type Cdc42 or a dominant negative Cdc42 mutant, Asn-17 Cdc42, were introduced into tracheal smooth muscle strips by reversible permeabilization, and tissues were incubated for 2 days to allow for protein expression. Expression of recombinant proteins was confirmed by immunoblot analysis. The expression of the dominant negative Cdc42 mutant inhibited contractile force and the increase in actin polymerization in response to acetylcholine stimulation but did not inhibit the increase in myosin light chain phosphorylation. The expression of wild type Cdc42 had no significant effect on force, actin polymerization, or myosin light chain phosphorylation. Contractile stimulation increased the association of neuronal Wiskott-Aldrich syndrome protein with Cdc42 and the Arp2/3 (actin-related protein) complex in smooth muscle tissues expressing wild type Cdc42. The agonist-induced increase in these protein interactions was inhibited in tissues expressing the inactive Cdc42 mutant. We conclude that Cdc42 activation regulates active tension development and actin polymerization during contractile stimulation. Cdc42 may regulate the activation of neuronal Wiskott-Aldrich syndrome protein and the actin related protein complex, which in turn regulate actin filament polymerization initiated by the contractile stimulation of smooth muscle.  相似文献   

11.
The contractile activation of airway smooth muscle tissues stimulates actin polymerization, and the inhibition of actin polymerization inhibits tension development. Actin-depolymerizing factor (ADF) and cofilin are members of a family of actin-binding proteins that mediate the severing of F-actin when activated by dephosphorylation at serine 3. The role of ADF/cofilin activation in the regulation of actin dynamics and tension development during the contractile activation of smooth muscle was evaluated in intact canine tracheal smooth muscle tissues. Two-dimensional gel electrophoresis revealed that ADF and cofilin exist in similar proportions in the muscle tissues, and that approximately 40% of the total ADF/cofilin in unstimulated tissues is phosphorylated. Phospho-ADF/cofilin decreased concurrently with tension development in response to stimulation with acetylcholine (ACh) or potassium depolarization indicating the activation of ADF/cofilin. Expression of an inactive phospho-cofilin mimetic (cofilin S3E) but not wild type cofilin in the smooth muscle tissues inhibited endogenous ADF/cofilin dephosphorylation and ACh-induced actin polymerization. Expression of cofilin S3E in the tissues depressed tension development in response to ACh, but it did not affect myosin light chain phosphorylation. The ACh-induced dephosphorylation of ADF/cofilin required the Ca2+-dependent activation of calcineurin (PP2B). The results indicate that the activation of ADF/cofilin is regulated by contractile stimulation in tracheal smooth muscle and that cofilin activation is required for actin polymerization and tension development in response to contractile stimulation.  相似文献   

12.
A variety of contractile stimuli increases actin polymerization, which is essential for smooth muscle contraction. However, the mechanism(s) of actin polymerization associated with smooth muscle contraction is not fully understood. We tested the hypothesis that phosphorylated myosin triggers actin polymerization. The present study was conducted in isolated intact or beta-escin-permeabilized rat small mesenteric arteries. Reductions in the 20-kDa myosin regulatory light chain (MLC20) phosphorylation were achieved by inhibiting MLC kinase with ML-7. Increases in MLC20 phosphorylation were achieved by inhibiting myosin light chain phosphatase with microcystin. Isometric force, the degree of actin polymerization as indicated by the F-actin-to-G-actin ratio, and MLC20 phosphorylation were determined. Reductions in MLC20 phosphorylation were associated with a decreased force development and actin polymerization. Increased MLC20 phosphorylation was associated with an increased force generation and actin polymerization. We also found that a heptapeptide that mimics the actin-binding motif of myosin II enhanced microcystin-induced force generation and actin polymerization without affecting MLC20 phosphorylation in beta-escin-permeabilized vessels. Collectively, our data demonstrate that MLC20 phosphorylation is capable of triggering actin polymerization. We further suggest that the binding of myosin to actin triggers actin polymerization and enhances the force development in arterial smooth muscle.  相似文献   

13.
Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser157 phosphorylation by different kinases. Inhibition of VASP Ser157 phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser157 mediates its localization at the membrane, but that VASP Ser157 phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM.  相似文献   

14.
We have investigated the role of heat shock protein 27 (HSP27) phosphorylation and the association of HSP27 with contractile proteins actin, myosin, and tropomyosin. Smooth muscle cells were labeled with [(32)P]orthophosphate. C2-ceramide (0.1 microM), an activator of protein kinase C (PKC), induced a sustained increase in HSP27 phosphorylation that was inhibited by calphostin C. C2-ceramide-induced (0.1 microM) sustained colonic smooth muscle cell contraction was accompanied by significant increases in the association of HSP27 with tropomyosin and in the association of HSP27 with actin. The significant increases occurred at 30 s after stimulation and were sustained at 4 min. Contraction was also associated with strong colocalization of HSP27 with tropomyosin and with actin as observed after immunofluorescent labeling of tropomyosin, actin, and HSP27 followed by confocal microscopy. Transfection of smooth muscle cells with HSP27 phosphorylation mutants indicated that phosphorylation of HSP27 could affect myosin association with actin. In conclusion 1) HSP27 phosphorylation appears to be necessary for reorganization of HSP27 inside the cell and seems to be directly correlated with the PKC signal transduction pathway, and 2) agonist-induced phosphorylation of HSP27 modulates actin-myosin interaction through thin-filament regulation of tropomyosin.  相似文献   

15.
Contractile stimulation has been shown to initiate actin polymerization in smooth muscle tissues, and this actin polymerization is required for active tension development. We evaluated whether neuronal Wiskott-Aldrich syndrome protein (N-WASp)-mediated activation of the actin-related proteins 2 and 3 (Arp2/3) complex regulates actin polymerization and tension development initiated by muscarinic stimulation in canine tracheal smooth muscle tissues. In vitro, the COOH-terminal CA domain of N-WASp acts as an inhibitor of N-WASp-mediated actin polymerization; whereas the COOH-terminal VCA domain of N-WASp is constitutively active and is sufficient by itself to catalyze actin polymerization. Plasmids encoding EGFP-tagged wild-type N-WASp, the N-WASp VCA and CA domains, or enhanced green fluorescent protein (EGFP) were introduced into tracheal smooth muscle strips by reversible permeabilization, and the tissues were incubated for 2 days to allow for expression of the proteins. Expression of the CA domain inhibited actin polymerization and tension development in response to ACh, whereas expression of the wild-type N-WASp, the VCA domain, or EGFP did not. The increase in myosin light-chain (MLC) phosphorylation in response to contractile stimulation was not affected by expression of either the CA or VCA domain of N-WASp. Stimulation of the tissues with ACh increased the association of the Arp2/3 complex with N-WASp, and this association was inhibited by expression of the CA domain. The results demonstrate that 1) N-WASp-mediated activation of the Arp2/3 complex is necessary for actin polymerization and tension development in response to muscarinic stimulation in tracheal smooth muscle and 2) these effects are independent of the regulation of MLC phosphorylation. Wiskott-Aldrich syndrome protein; actin-related protein; tracheal muscle; cytoskeleton  相似文献   

16.
Par-4 (prostate apoptosis response 4) is a pro-apoptotic protein and tumour suppressor that was originally identified as a gene product up-regulated during apoptosis in prostate cancer cells. Here, we show, for the first time, that Par-4 is expressed and co-localizes with the actin filament bundles in vascular smooth muscle. Furthermore, we demonstrate that targeting of ZIPK to the actin filaments, as observed upon PGF-2α stimulation, is inhibited by the presence of a cell permeant Par-4 decoy peptide. The same decoy peptide also significantly inhibits PGF-2α induced contractions of smooth muscle tissue. Moreover, knockdown of Par-4 using antisense morpholino nucleotides results in significantly reduced contractility, and myosin light chain and myosin phosphatase target subunit phosphorylation. These results indicate that Par-4 facilitates contraction by targeting ZIPK to the vicinity of its substrates, myosin light chain and MYPT, which are located on the actin filaments. These results identify Par-4 as a novel regulator of myosin light chain phosphorylation in differentiated, contractile vascular smooth muscle.  相似文献   

17.
Displacement of the contractile protein tropomyosin from actin filament exposes the myosin-binding sites on actin, resulting in actin-myosin interaction and muscle contraction. The objective of the present study was to better understand the interaction of tropomyosin with heat shock protein (HSP)27 in contraction of smooth muscle cells of the colon. We investigated the possibility of a direct protein-protein interaction of tropomyosin with HSP27 and the role of phosphorylated HSP27 in this interaction. Immunoprecipitation studies on rabbit smooth muscle cells indicate that upon acetylcholine-induced contraction tropomyosin shows increased association with HSP27 phosphorylated at Ser82 and Ser78. Transfection of smooth muscle cells with HSP27 phosphorylation mutants indicated that the association of tropomyosin with HSP27 could be affected by HSP27 phosphorylation. In vitro binding studies with glutathione S-transferase (GST)-tagged HSP27 mutant proteins show that tropomyosin has greater direct interaction to phosphomimic HSP27 mutant compared with wild-type and nonphosphomimic HSP27. Our data suggest that, in response to a contractile agonist, HSP27 undergoes a rapid phosphorylation that may strengthen its interaction with tropomyosin. acetylcholine; fusion proteins; serine  相似文献   

18.
The various protein components of a reversible phosphorylating system regulating smooth muscle actomyosin Mg-ATPase activity have been purified. The enzyme catalyzing phosphorylation of smooth muscle myosin, myosin-kinase, requires Ca2+ and the Ca2+-binding protein calmodulin for activity and binds calmodulin in a ratio of 1 mol calmodulin to 1 mol of myosin kinase. Myosin kinase can be phosphorylated by the catalytic subunit of cyclic AMP (cAMP)-dependent protein kinase, and phosphorylation of myosin kinase that does not have calmodulin bound results in a marked decrease in the affinity of this enzyme for Ca2+-calmodulin. This effect is reversed when myosin kinase is dephosphorylated by a phosphatase purified from smooth muscle. When the various components of the smooth muscle myosin phosphorylating-dephosphorylating system are reconstituted, a positive correlation is found between the state of myosin phosphorylation and the actin-activated Mg-ATPase activity of myosin. Unphosphorylated and dephosphorylated myosin cannot be activated by actin, but the phosphorylated and rephosphorylated myosin can be activated by actin. The same relationship between phosphorylation and enzymatic activity was found for a chymotryptic peptide of myosin, smooth muscle heavy meromyosin. The findings reported here suggest one mechanism by which Ca2+ and calmodulin may act to regulate smooth muscle contraction and how cAMP may modulate smooth muscle contractile activity.  相似文献   

19.
The actin-regulatory protein profilin has been shown to regulate the actin cytoskeleton and the motility of nonmuscle cells. To test the hypothesis that profilin plays a role in regulating smooth muscle contraction, profilin antisense or sense oligodeoxynucleotides were introduced into the canine carotid smooth muscle by a method of reversible permeabilization, and these strips were incubated for 2 days for protein downregulation. The treatment of smooth muscle strips with profilin antisense oligodeoxynucleotides inhibited the expression of profilin; it did not influence the expression of actin, myosin heavy chain, and metavinculin/vinculin. Profilin sense did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in profilin antisense-treated muscle strips than in profilin sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The depletion of profilin did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin (MLC20) in response to stimulation with norepinephrine or KCl. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in profilin-deficient smooth muscle strips. These results suggest that profilin is a necessary molecule of signaling cascades that regulate carotid smooth muscle contraction, but that it does not modulate MLC20 phosphorylation during contractile stimulation. Profilin may play a role in the regulation of actin polymerization or organization in response to contractile stimulation of smooth muscle.  相似文献   

20.
在有Ca2+和钙调蛋白存在时,肌球蛋白轻链激酶催化肌球蛋白磷酸化,促使肌动蛋白激活的肌球蛋白(肌动球蛋白)Mg2+-ATP酶活性显著增加.然而,肌球蛋白磷酸化水平与Mg2+-ATP酶之间的关系是非线性的,原肌球蛋白可以进一步增加Mg2+-ATP酶的活性,但仍不改变它们之间的非线性关系.肌球蛋白轻链激酶的合成肽抑制剂抑制了肌球蛋白磷酸化和Mg2+-ATP酶活性,并导致平滑肌去膜肌纤维的等长收缩张力与速度的降低.结果提示肌球蛋白轻链激酶参与脊椎动物平滑肌收缩的调节过程,肌球蛋白轻链磷酸化作用会引起平滑肌收缩  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号