首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Cytosolic valosin-containing protein (p97(VCP)) is translocated to the ER membrane by binding to selenoprotein S (SelS), which is an ER membrane protein, during endoplasmic reticulum-associated degradation (ERAD). Selenoprotein K (SelK) is another known p97(VCP)-binding selenoprotein, and the expression of both SelS and SelK is increased under ER stress. To understand the regulatory mechanisms of SelS, SelK, and p97(VCP) during ERAD, the interaction of the selenoproteins with p97(VCP) was investigated using N2a cells and HEK293 cells. Both SelS and SelK co-precipitated with p97(VCP). However, the association between SelS and SelK did not occur in the absence of p97(VCP). SelS had the ability to recruit p97(VCP) to the ER membrane but SelK did not. The interaction between SelK and p97(VCP) did not occur in SelS knockdown cells, whereas SelS interacted with p97(VCP) in the presence or absence of SelK. These results suggest that p97(VCP) is first translocated to the ER membrane via its interaction with SelS, and then SelK associates with the complex on the ER membrane. Therefore, the interaction between SelK and p97(VCP) is SelS-dependent, and the resulting ERAD complex (SelS-p97(VCP)-SelK) plays an important role in ERAD and ER stress.  相似文献   

2.
Improperly folded proteins in the endoplasmic reticulum (ER) are eliminated via ER-associated degradation, a process that dislocates misfolded proteins from the ER membrane into the cytosol, where they undergo proteasomal degradation. Dislocation requires a subclass of ubiquitin ligases that includes gp78 in addition to the AAA ATPase p97/VCP and its cofactor, the Ufd1-Npl4 dimer. We have previously reported that gp78 interacts directly with p97/VCP. Here, we identify a novel p97/VCP-interacting motif (VIM) within gp78 that mediates this interaction. We demonstrate that the VIM of gp78 recruits p97/VCP to the ER, but has no effect on Ufd1 localization. We also show that gp78 VIM interacts with the ND1 domain of p97/VCP that was shown previously to be the binding site for Ufd1. To evaluate the role of Ufd1 in gp78-p97/VCP-mediated degradation of CD3delta, a known substrate of gp78, RNA interference was used to silence the expression of Ufd1 and p97/VCP. Inhibition of p97/VCP, but not Ufd1, stabilized CD3delta in cells that overexpress gp78. However, both p97/VCP and Ufd1 appear to be required for CD3delta degradation in cells expressing physiological levels of gp78. These results raise the possibility that Ufd1 and gp78 may bind p97/VCP in a mutually exclusive manner and suggest that gp78 might act in a Ufd1-independent degradation pathway for misfolded ER proteins, which operates in parallel with the previously established p97/VCP-Ufd1-Npl4-mediated mechanism.  相似文献   

3.
Endoplasmic reticulum-associated protein degradation (ERAD) removes improperly-folded proteins from the ER membrane into the cytosol where they undergo proteasomal degradation. Valosin-containing protein (VCP)/p97 mediates in the extraction of ERAD substrates from the ER. BRSK2 (also known as SAD-A), a serine/threonine kinase of the AMP-activated protein kinase family affected VCP/p97 activity in ERAD. In addition, BRSK2 interacted with VCP/p97 via three of the four functional domains of VCP/p97. Immunofluorescence demonstrated that BRSK2 and VCP/p97 were co-localized and also that knockdown of endogenous BRSK2 induced increased levels of CD3δ, a substrate in ERAD for VCP/p97. Thus, BRSK2 might affect the activity of VCP/p97 in ERAD.  相似文献   

4.
SelS is a newly identified selenoprotein and its gene expression is up-regulated in the liver of Psammomys obesus after fasting. We have examined whether SelS is regulated by glucose deprivation and endoplasmic reticulum (ER) stress in HepG2 cells. Glucose deprivation and the ER stress inducers tunicamycin and thapsigargin increased SelS gene expression and protein content several-fold in parallel with glucose-regulated protein 78. The overexpression of SelS increased Min6 cell resistance to oxidative stress-induced toxicity. These results indicate that SelS is a novel member of the glucose-regulated protein family and its function is related to the regulation of cellular redox balance.  相似文献   

5.
Selenoprotein S (SelS), a transmembrane selenoprotein, may be related to the response of endoplasmic reticulum (ER) stress. In this report, the influence of selenite supplementation and SelS gene silence on β-mercaptoethanol (β-ME)-mediated ER stress and cell apoptosis in HepG2 cells were examined. The results showed that SelS protein expression was markedly increased by 10 mM β-ME and 100 nM sodium selenite in HepG2 cells. GRP78 protein level was significantly increased after treatment with 10 mM β-ME in HepG2 cells, which suggested that β-ME was also an ER stress inducer. Meanwhile, β-ME (10 mM) was found to induce cell apoptosis, which was alleviated obviously when cells were pretreated with 100 nM selenite before exposure to β-ME. Moreover, the suppression of SelS gene by siRNA could aggravate HepG2 cell apoptosis induced by β-ME significantly. In conclusion, these results suggested that β-ME, also an ER stress agent, could induce cell apoptosis, and SelS may play an important role in protecting cells from apoptosis induced by ER stress in HepG2 cells.  相似文献   

6.
Selenoprotein K (SelK) is an 11-kDa endoplasmic reticulum (ER) protein of unknown function. Herein, we defined a new eukaryotic protein family that includes SelK, selenoprotein S (SelS), and distantly related proteins. Comparative genomics analyses indicate that this family is the most widespread eukaryotic selenoprotein family. A biochemical search for proteins that interact with SelK revealed ER-associated degradation (ERAD) components (p97 ATPase, Derlins, and SelS). In this complex, SelK showed higher affinity for Derlin-1, whereas SelS had higher affinity for Derlin-2, suggesting that these selenoproteins could determine the nature of the substrate translocated through the Derlin channel. SelK co-precipitated with soluble glycosylated ERAD substrates and was involved in their degradation. Its gene contained a functional ER stress response element, and its expression was up-regulated by conditions that induce the accumulation of misfolded proteins in the ER. Components of the oligosaccharyltransferase complex (ribophorins, OST48, and STT3A) and an ER chaperone, calnexin, were found to bind SelK. A glycosylated form of SelK was also detected, reflecting its association with the oligosaccharyltransferase complex. These data suggest that SelK is involved in the Derlin-dependent ERAD of glycosylated misfolded proteins and that the function defined by the prototypic SelK is the widespread function of selenium in eukaryotes.  相似文献   

7.
Accelerated endoplasmic reticulum (ER)-associated degradation (ERAD) of the cholesterol biosynthetic enzyme 3-hydroxy-3-methylglutaryl-coenzyme A reductase results from its sterol-induced binding to ER membrane proteins called Insig-1 and Insig-2. This binding allows for subsequent ubiquitination of reductase by Insig-associated ubiquitin ligases. Once ubiquitinated, reductase becomes dislocated from ER membranes into the cytosol for degradation by 26 S proteasomes through poorly defined reactions mediated by the AAA-ATPase valosin-containing protein (VCP)/p97 and augmented by the nonsterol isoprenoid geranylgeraniol. Here, we report that the oxysterol 25-hydroxycholesterol and geranylgeraniol combine to trigger extraction of reductase across ER membranes prior to its cytosolic release. This conclusion was drawn from studies utilizing a novel assay that measures membrane extraction of reductase by determining susceptibility of a lumenal epitope in the enzyme to in vitro protease digestion. Susceptibility of the lumenal epitope to protease digestion and thus membrane extraction of reductase were tightly regulated by 25-hydroxycholesterol and geranylgeraniol. The reaction was inhibited by RNA interference-mediated knockdown of either Insigs or VCP/p97. In contrast, reductase continued to become membrane-extracted, but not cytosolically dislocated, in cells deficient for AAA-ATPases of the proteasome 19 S regulatory particle. These findings establish sequential roles for VCP/p97 and the 19 S regulatory particle in the sterol-accelerated ERAD of reductase that may be applicable to the ERAD of other substrates.  相似文献   

8.
Abnormal protein accumulation and cell death with cytoplasmic vacuoles are hallmarks of several neurodegenerative disorders. We previously identified p97/valosin-containing protein (VCP), an AAA ATPase with two conserved ATPase domains (D1 and D2), as an interacting partner of the Machado-Joseph disease (MJD) protein with expanded polyglutamines that causes Machado-Joseph disease. To reveal its pathophysiological roles in neuronal cells, we focused on its ATPase activity. We constructed and characterized PC12 cells expressing wild-type p97/VCP and p97(K524A), a D2 domain mutant. The expression level, localization, and complex formation of both proteins were indistinguishable, but the ATPase activity of p97(K524A) was much lower than that of the wild type. p97(K524A) induced cytoplasmic vacuoles that stained with an endoplasmic reticulum (ER) marker, and accumulation of polyubiquitinated proteins in the nuclear and membrane but not cytoplasmic fractions was observed, together with the elevation of ER stress markers. These results show that p97/VCP is essential for degrading membrane-associated ubiquitinated proteins and that profound deficits in its ATPase activity severely affect ER quality control, leading to abnormal ER expansion and cell death. Excessive accumulation of misfolded proteins may inactivate p97/VCP in several neurodegenerative disorders, eventually leading to the neurodegenerations.  相似文献   

9.
Cellular functions of the essential, ubiquitin-selective AAA ATPase p97/valosin-containing protein (VCP) are controlled by regulatory cofactors determining substrate specificity and fate. Most cofactors bind p97 through a ubiquitin regulatory X (UBX) or UBX-like domain or linear sequence motifs, including the hitherto ill defined p97/VCP-interacting motif (VIM). Here, we present the new, minimal consensus sequence RX(5)AAX(2)R as a general definition of the VIM that unites a novel family of known and putative p97 cofactors, among them UBXD1 and ZNF744/ANKZF1. We demonstrate that this minimal VIM consensus sequence is necessary and sufficient for p97 binding. Using NMR chemical shift mapping, we identified several residues of the p97 N-terminal domain (N domain) that are critical for VIM binding. Importantly, we show that cellular stress resistance conferred by the yeast VIM-containing cofactor Vms1 depends on the physical interaction between its VIM and the critical N domain residues of the yeast p97 homolog, Cdc48. Thus, the VIM-N domain interaction characterized in this study is required for the physiological function of Vms1 and most likely other members of the newly defined VIM family of cofactors.  相似文献   

10.
Salt-inducible kinase 2 (SIK2) is an important regulator of cAMP response element-binding protein-mediated gene expression in various cell types and is the only AMP-activated protein kinase family member known to interact with the p97/valosin-containing protein (VCP) ATPase. Previously, we have demonstrated that SIK2 can regulate autophagy when proteasomal function is compromised. Here we report that physical and functional interactions between SIK2 and p97/VCP underlie the regulation of endoplasmic reticulum (ER)-associated protein degradation (ERAD). SIK2 co-localizes with p97/VCP in the ER membrane and stimulates its ATPase activity through direct phosphorylation. Although the expression of wild-type recombinant SIK2 accelerated the degradation and removal of ERAD substrates, the kinase-deficient variant conversely had no effect. Furthermore, down-regulation of endogenous SIK2 or mutation of the SIK2 target site on p97/VCP led to impaired degradation of ERAD substrates and disruption of ER homeostasis. Collectively, these findings highlight a mechanism by which the interplay between SIK2 and p97/VCP contributes to the regulation of ERAD in mammalian cells.  相似文献   

11.
Nonalcoholic fatty liver disease (NAFLD) is closely associated with insulin resistance (IR) and type 2 diabetes mellitus (T2DM), which are all complex metabolic disorders. Selenoprotein S (SelS) is an endoplasmic reticulum (ER) resident selenoprotein involved in regulating ER stress and has been found to participate in the occurrence and development of IR and T2DM. However, the potential role and mechanism of SelS in NAFLD remains unclear. Here, we analyzed SelS expression in the liver of high-fat diet (HFD)-fed mice and obese T2DM model (db/db) mice and generated hepatocyte-specific SelS knockout (SelSH-KO) mice using the Cre-loxP system. We showed that hepatic SelS expression levels were significantly downregulated in HFD-fed mice and db/db mice. Hepatic SelS deficiency markedly increased ER stress markers in the liver and caused hepatic steatosis via increased fatty acid uptake and reduced fatty acid oxidation. Impaired insulin signaling was detected in the liver of SelSH-KO mice with decreased phosphorylation levels of insulin receptor substrate 1 (IRS1) and protein kinase B (PKB/Akt), which ultimately led to disturbed glucose homeostasis. Meanwhile, our results showed hepatic protein kinase Cɛ (PKCɛ) activation participated in the negative regulation of insulin signaling in SelSH-KO mice. Moreover, the inhibitory effect of SelS on hepatic steatosis and IR was confirmed by SelS overexpression in primary hepatocytes in vitro. Thus, we conclude that hepatic SelS plays a key role in regulating hepatic lipid accumulation and insulin action, suggesting that SelS may be a potential intervention target for the prevention and treatment of NAFLD and T2DM.Subject terms: Metabolic syndrome, Obesity  相似文献   

12.
Wang Y  Ballar P  Zhong Y  Zhang X  Liu C  Zhang YJ  Monteiro MJ  Li J  Fang S 《PloS one》2011,6(8):e24478
The small p97/VCP-interacting protein (SVIP) functions as an inhibitor of the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. Here we show that overexpression of SVIP in HeLa cells leads to localization of p97/VCP at the plasma membrane, intracellular foci and juxtanuclear vacuoles. The p97/VCP-positive vacuolar structures colocalized or associated with LC3 and lamp1, suggesting that SVIP may regulate autophagy. In support of this possibility, knockdown of SVIP diminished, whereas overexpression of SVIP enhanced LC3 lipidation. Surprisingly, knockdown of SVIP reduced the levels of p62 protein at least partially through downregulation of its mRNA, which was accompanied by a decrease in starvation-induced formation of p62 bodies. Overexpression of SVIP, on the other hand, increased the levels of p62 protein and enhanced starvation-activated autophagy as well as promoted sequestration of polyubiquitinated proteins and p62 in autophagosomes. These results suggest that SVIP plays a regulatory role in p97 subcellular localization and is a novel regulator of autophagy.  相似文献   

13.
The distribution and morphology of the endoplasmic reticulum (ER) in mammalian cells depend on both dynamic and static interactions of ER membrane proteins with microtubules (MTs). Cytoskeleton-linking membrane protein (CLIMP)-63 is exclusively localized in sheet-like ER membranes, typical structures of the rough ER, and plays a pivotal role in the static interaction with MTs. Our previous study showed that the 42-kDa ER-residing form of syntaxin 5 (Syn5L) regulates ER structure through the interactions with both CLIMP-63 and MTs. Here, we extend our previous study and show that the valosin-containing protein/p97-interacting membrane protein (VIMP)/SelS is also a member of the family of proteins that shape the ER by interacting with MTs. Depletion of VIMP causes the spreading of the ER to the cell periphery and affects an MT-dependent process on the ER. Although VIMP can interact with CLIMP-63 and Syn5L, it does not interact with MT-binding ER proteins (such as Reep1) that shape the tubular smooth ER, suggesting that different sets of MT-binding ER proteins are used to organize different ER subdomains.  相似文献   

14.
Protein degradation mediated by the ubiquitin/proteasome system is essential for the elimination of misfolded proteins from the endoplasmic reticulum (ER) to adapt to ER stress. It has been reported that the AAA ATPase p97/VCP/CDC48 is required in this pathway for protein dislocation across the ER membrane and subsequent ubiquitin dependent degradation by the 26S proteasome in the cytosol. Throughout ER-associated protein degradation, p97 cooperates with a binary Ufd1/Npl4-complex. In Caenorhabditis elegans two homologs of p97, designated CDC-48.1 and CDC-48.2, exist. Our results indicate that both p97 homologs interact with UFD-1/NPL-4 in a similar CDC-48(UFD-1/NPL-4) complex. RNAi mediated depletion of the corresponding genes induces ER stress resulting in hypersensitivity to conditions which induce increased levels of unfolded proteins in the ER lumen. Together, these data suggest an evolutionarily conserved retro-translocation machinery at the endoplasmic reticulum.  相似文献   

15.
The 15-kDa selenoprotein (Sep15) is a selenoprotein residing in the lumen of the endoplasmic reticulum (ER) and implicated in quality control of protein folding. Herein, we established an inducible RNAi cell line that targets Sep15 mRNA in Chang liver cells. RNAi-induced Sep15 deficiency led to inhibition of cell proliferation, whereas cell growth was resumed after removal of the knockdown inducer. Sep15-deficient cells were arrested at the G1 phase by upregulating p21 and p27, and these cells were also characterized by ER stress. In addition, Sep15 deficiency led to the relocation of focal adhesions to the periphery of the cell basement and to the decrease of the migratory and invasive ability. All these changes were reversible depending on Sep15 status. Rescuing the knockdown state by expressing a silent mutant Sep15 mRNA that is resistant to siRNA also reversed the phenotypic changes. Our results suggest that SEP15 plays important roles in the regulation of the G1 phase during the cell cycle as well as in cell motility in Chang liver cells, and that this selenoprotein offers a novel functional link between the cell cycle and cell motility.  相似文献   

16.
Misfolded proteins in the endoplasmic reticulum (ER) are eliminated by a process known as ER-associated degradation (ERAD), which starts with misfolded protein recognition, followed by ubiquitination, retrotranslocation to the cytosol, deglycosylation, and targeting to the proteasome for degradation. Actions of multisubunit protein machineries in the ER membrane integrate these steps. We hypothesized that regulation of the multisubunit machinery assembly is a mechanism by which ERAD activity is regulated. To test this hypothesis, we investigated the potential regulatory role of the small p97/VCP-interacting protein (SVIP) on the formation of the ERAD machinery that includes ubiquitin ligase gp78, AAA ATPase p97/VCP, and the putative channel Derlin1. We found that SVIP is anchored to microsomal membrane via myristoylation and co-fractionated with gp78, Derlin1, p97/VCP, and calnexin to the ER. Like gp78, SVIP also physically interacts with p97/VCP and Derlin1. Overexpression of SVIP blocks unassembled CD3delta from association with gp78 and p97/VCP, which is accompanied by decreases in CD3delta ubiquitination and degradation. Silencing SVIP expression markedly enhances the formation of gp78-p97/VCP-Derlin1 complex, which correlates with increased degradation of CD3delta and misfolded Z variant of alpha-1-antitrypsin, established substrates of gp78. These results suggest that SVIP is an endogenous inhibitor of ERAD that acts through regulating the assembly of the gp78-p97/VCP-Derlin1 complex.  相似文献   

17.
18.
SEPS1 (also called selenoprotein S, SelS) plays an important role in the production of inflammatory cytokines and its expression is activated by endoplasmic reticulum (ER) stress. In this report, we have identified two binding sites for the nuclear factor kappa B in the human SEPS1 promoter. SEPS1 gene expression, protein levels and promoter activity were all increased 2-3-fold by TNF-alpha and IL-1beta in HepG2 cells. We have also confirmed that the previously proposed ER stress response element GGATTTCTCCCCCGCCACG in the SEPS1 proximate promoter is fully functional and responsive to ER stress. However, concurrent treatment of HepG2 cells with IL-1beta and ER stress produced no additive effect on SEPS1 gene expression. We conclude that SEPS1 is a new target gene of NF-kappaB. Together with our previous findings that SEPS1 may regulate cytokine production in macrophage cells, we propose a regulatory loop between cytokines and SEPS1 that plays a key role in control of the inflammatory response.  相似文献   

19.
Secretion of the glucose-regulated selenoprotein SEPS1 from hepatoma cells   总被引:1,自引:0,他引:1  
SEPS1 (also called selenoprotein S, SelS, Tanis or VIMP) is a selenoprotein, localized predominantly in the ER membrane and also on the cell surface. In this report, we demonstrate that SEPS1 protein is also secreted from hepatoma cells but not from five other types of cells examined. The secretion can be abolished by the ER-Golgi transport inhibitor Brefeldin A and by the protein synthesis inhibitor cycloheximide. Using a sandwich ELISA, SEPS1 was detected in the sera of 65 out of 209 human subjects (31.1%, average=15.7+/-1.1 ng/mL). Fractionation of human serum indicated that SEPS1 was associated with LDL and possibly with VLDL. The function of plasma SEPS1 is unclear but may be related to lipoprotein metabolism.  相似文献   

20.
Endoplasmic reticulum-associated degradation (ERAD) is a protein quality control mechanism that eliminates unwanted proteins from the endoplasmic reticulum (ER) through a ubiquitin-dependent proteasomal degradation pathway. gp78 is a previously described ER membrane-anchored ubiquitin ligase (E3) involved in ubiquitination of ER proteins. AAA ATPase (ATPase associated with various cellular activities) p97/valosin-containing protein (VCP) subsequently dislodges the ubiquitinated proteins from the ER and chaperones them to the cytosol, where they undergo proteasomal degradation. We now report that gp78 physically interacts with p97/VCP and enhances p97/VCP-polyubiquitin association. The enhanced association correlates with decreases in ER stress-induced accumulation of polyubiquitinated proteins. This effect is abolished when the p97/VCP-interacting domain of gp78 is removed. Further, using ERAD substrate CD3delta, gp78 consistently enhances p97/VCP-CD3delta binding and facilitates CD3delta degradation. Moreover, inhibition of endogenous gp78 expression by RNA interference markedly increases the levels of total polyubiquitinated proteins, including CD3delta, and abrogates VCP-CD3delta interactions. The gp78 mutant with deletion of its p97/VCP-interacting domain fails to increase CD3delta degradation and leads to accumulation of polyubiquitinated CD3delta, suggesting a failure in delivering ubiquitinated CD3delta for degradation. These data suggest that gp78-p97/VCP interaction may represent one way of coupling ubiquitination with retrotranslocation and degradation of ERAD substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号