首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nrf2 is the regulator of the oxidative/electrophilic stress response. Its turnover is maintained by Keap1-mediated proteasomal degradation via a two-site substrate recognition mechanism in which two Nrf2-Keap1 binding sites form a hinge and latch. The E3 ligase adaptor Keap1 recognizes Nrf2 through its conserved ETGE and DLG motifs. In this study, we examined how the ETGE and DLG motifs bind to Keap1 in a very similar fashion but with different binding affinities by comparing the crystal complex of a Keap1-DC domain-DLG peptide with that of a Keap1-DC domain-ETGE peptide. We found that these two motifs interact with the same basic surface of either Keap1-DC domain of the Keap1 homodimer. The DLG motif works to correctly position the lysines within the Nrf2 Neh2 domain for efficient ubiquitination. Together with the results from calorimetric and functional studies, we conclude that different electrostatic potentials primarily define the ETGE and DLG motifs as a hinge and latch that senses the oxidative/electrophilic stress.  相似文献   

2.
3.
4.
5.
Under homeostatic conditions, Nrf2 activity is constitutively repressed. This process is dependent on Keap1, to which Nrf2 binds through the Neh2 domain. Since the N-terminal subdomain of Neh2 (Neh2-NT) contains evolutionarily conserved motifs, we examined the roles they play in the degradation of Nrf2. In Neh2-NT, we defined a novel motif that is distinct from the previously characterized DIDLID motif and designated it DLG motif. Deletion of Neh2-NT or mutation of the DLG motif largely abolished the Keap1-mediated degradation of Nrf2. These mutations were found to enfeeble the binding affinity of Nrf2 to Keap1. The Neh2-NT subdomain directed DLG-dependent, Keap1-independent, degradation of a reporter protein in the nucleus. By contrast, mutation of DLG did not affect the half-life of native Nrf2 protein in the nucleus under oxidative stress conditions. These results thus demonstrate that DLG motif plays essential roles in the Keap1-mediated proteasomal degradation of Nrf2 in the cytoplasm.  相似文献   

6.
7.
8.
9.
Nrf2 regulates the cellular oxidative stress response, whereas Keap1 represses Nrf2 through its molecular interaction. To elucidate the molecular mechanism of the Keap1 and Nrf2 interaction, we resolved the six-bladed beta propeller crystal structure of the Kelch/DGR and CTR domains of mouse Keap1 and revealed that extensive inter- and intrablade hydrogen bonds maintain the structural integrity and proper association of Keap1 with Nrf2. A peptide containing the ETGE motif of Nrf2 binds the beta propeller of Keap1 at the entrance of the central cavity on the bottom side via electrostatic interactions with conserved arginine residues. We found a somatic mutation and a gene variation in human lung cancer cells that change glycine to cysteine in the DGR domain, introducing local conformational changes that reduce Keap1's affinity for Nrf2. These results provide a structural basis for the loss of Keap1 function and gain of Nrf2 function.  相似文献   

10.
11.
12.
Under pathological conditions such as ischemia-reperfusion, Nrf2 acts as a key regulator of cellular oxidative response. Provided that Nrf2 is sensitive to hypoxia during ischemia, Nrf2 may affect reactive oxygen species metabolism during reoxygenation. In this study, hypoxia suppressed Nrf2 protein, and its hypoxic suppression was not recovered with knockdown of the Nrf2 repressor Keap1. Moreover, an Nrf2 mutant lacking the Keap1 binding domain was suppressed under hypoxia, suggesting that Keap1 does not contribute to hypoxic Nrf2 suppression. HIF-1α and Siah2 are both key regulators of hypoxic responses. Hypoxia induced the Siah2 protein. Although inhibition or knockdown of Siah2 prevented the suppression of Nrf2, knockdown of HIF-1α did not. Moreover, Siah2 interacted with Nrf2 through a binding motif, suggesting that Siah2 contributes to the suppression of Nrf2. Some cytosolic kinases also play important roles in Nrf2 regulation. In this study, PKC phosphorylates serine residues of Nrf2 during hypoxia. Knockdown of Siah2 rescued hypoxic decreases in an Nrf2 mutant that mimicked phosphorylation at serine 40 or lacked this phosphorylation site, suggesting that Siah2 contributes to the degradation of Nrf2 irrespective of its phosphorylation status. Moreover, knockdown of Siah2 attenuated ubiquitination of the Nrf2 mutant, suggesting that association of Siah2 with Nrf2 causes proteasome-mediated degradation of Nrf2.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Abstract

In biological systems, the Keap1/Nrf2/antioxidant response element pathway determines the ability of mammalian cells to adapt and survive conditions of oxidative, electrophilic and inflammatory stress by regulating the production of cytoprotective enzymes NAD(P)H:quinone oxidoreductase 1 (NQO1, EC 1.6.99.2) being one of them. Novel biologically active benzenesulfonamides 2, 3, 57, penta-2,4-dienamide 4 and chromene-2-carboxamide 8 structurally augmented with an electron-deficient Michael acceptor enone or cyanoenone functionalities were prepared. A new biological activity was conferred to these molecules, that of induction of NQO1. The potency of induction was increased by incorporation of a nitrile group adjacent to the enone and the dinitrophenyl derivative 3 was the most promising inducer. Also, molecular docking of the new compounds in the Nrf2-binding site of Keap1 was performed to assess their ability to inhibit Keap1 which biologically leads to a consequent Nrf2 accumulation and enhanced gene expression of NQO1. Docking results showed considerable interactions between the new molecules and essential binding site amino acids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号