首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.

Background

The cytosol of most eukaryotic cells contains multiple highly conserved Hsp70 orthologs that differ mainly by their spatio-temporal expression patterns. Hsp70s play essential roles in protein folding, transport or degradation, and are major players of cellular quality control processes. However, while several reports suggest that specialized functions of Hsp70 orthologs were selected through evolution, few studies addressed systematically this issue.

Methodology/Principal Findings

We compared the ability of Ssa1p-Ssa4p from Saccharomyces cerevisiae and Ssa5p-Ssa8p from the evolutionary distant yeast Yarrowia lipolytica to perform Hsp70-dependent tasks when expressed as the sole Hsp70 for S. cerevisiae in vivo. We show that Hsp70 isoforms (i) supported yeast viability yet with markedly different growth rates, (ii) influenced the propagation and stability of the [PSI+] and [URE3] prions, but iii) did not significantly affect the proteasomal degradation rate of CFTR. Additionally, we show that individual Hsp70 orthologs did not induce the formation of different prion strains, but rather influenced the aggregation properties of Sup35 in vivo. Finally, we show that [URE3] curing by the overexpression of Ydj1p is Hsp70-isoform dependent.

Conclusion/Significance

Despite very high homology and overlapping functions, the different Hsp70 orthologs have evolved to possess distinct activities that are required to cope with different types of substrates or stress situations. Yeast prions provide a very sensitive model to uncover this functional specialization and to explore the intricate network of chaperone/co-chaperone/substrates interactions.  相似文献   

2.
We previously described many Hsp70 Ssa1p mutants that impair [PSI+] prion propagation in yeast without affecting cell growth. To determine how the mutations alter Hsp70 we analyzed biochemically the substrate-binding domain (SBD) mutant L483W and the nucleotide-binding domain (NBD) mutants A17V and R34K. Ssa1L483W ATPase activity was elevated 10-fold and was least stimulated by substrates or Hsp40 co-chaperones. Ssa1A17V and Ssa1R34K ATPase activities were nearly wild type but both showed increased stimulation by substrates. Peptide binding and reactivation of denatured luciferase were enhanced in Ssa1A17V and Ssa1R34K but compromised in Ssa1L483W. The nucleotide exchange factor Fes1 influenced ATPase of wild type Ssa1 and each mutant differently. Partial protease digestion uncovered similar and distinct conformational changes of the substrate-binding domain among the three mutants. Our data suggest that prion-impairing mutations of Ssa1 can increase or decrease substrate interactions, alter the Hsp70 reaction cycle at different points and impair normal NBD-SBD cooperation.  相似文献   

3.

Background

Phenotypes are variable within species, with high phenotypic variation in the fitness and cell morphology of natural yeast strains due to genetic variation. A gene deletion collection of yeast laboratory strains also contains phenotypic variations, demonstrating the involvement of each gene and its specific function. However, to date, no study has compared the phenotypic variations between natural strains and gene deletion mutants in yeast.

Results

The morphological variance was compared between 110 most distinct gene deletion strains and 36 typical natural yeast strains using a generalized linear model. The gene deletion strains had higher morphological variance than the natural strains. Thirty-six gene deletion mutants conferred significant morphological changes beyond that of the natural strains, revealing the importance of the genes with high genetic interaction and specific cellular functions for species conservation.

Conclusion

Based on the morphological analysis, we discovered gene deletion mutants whose morphologies were not seen in nature. Our multivariate approach to the morphological diversity provided a new insight into the evolution and species conservation of yeast.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-932) contains supplementary material, which is available to authorized users.  相似文献   

4.
5.

Background

Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors.

Results

In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities.

Conclusions

Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-344) contains supplementary material, which is available to authorized users.  相似文献   

6.
Several cellular chaperones have been shown to affect the propagation of the yeast prions [PSI+], [PIN+] and [URE3]. Ssa1 and Ssa2 are Hsp70 family chaperones that generally cause pro-[PSI+] effects, since dominant-negative mutants of Ssa1 or Ssa2 cure [PSI+], and overexpression of Ssa1 enhances de novo [PSI+] appearance and prevents curing by excess Hsp104. In contrast, Ssa1 was shown to have anti-[URE3] effects, since overexpression of Ssa1 cures [URE3]. Here we show that excess Ssa1 or Ssa2 can also cure [PSI+]. This curing is enhanced in the presence of [PIN+]. During curing, Sup35-GFP fluorescent aggregates get bigger and fewer in number, which leads to their being diluted out during cell division, a phenotype that was also observed during the curing of [PSI+] by certain variants of [PIN+]. The sizes of the detergent-resistant [PSI+] prion oligomers increase during [PSI+] curing by excess Ssa1. Excess Ssa1 likewise leads to an increase in oligomer sizes of low, medium and very high [PIN+] variants. While these phenotypes are also caused by inhibition of Hsp104 or Sis1, the overexpression of Ssa1 did not cause any change in Hsp104 or Sis1 levels.  相似文献   

7.
8.
9.
Sti1 is a novel activator of the Ssa proteins   总被引:1,自引:0,他引:1  
The molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins in eukaryotes. Of specific importance in this context is a ternary multichaperone complex in which Hsp70 and Hsp90 are connected by Hop. In Saccharomyces cerevisiae two components of the complex, yeast Hsp90 (yHsp90) and Sti1, the yeast homologue of Hop, had already been identified, but it remained to be shown which of the 14 different yeast Hsp70s are part of the Sti1 complex and what were the functional consequences resulting from this interaction. With a two-hybrid approach and co-immunoprecipitations, we show here that Sti1 specifically interacts with the Ssa group of the cytosolic yeast Hsp70 proteins. Using purified components, we reconstituted the dimeric Ssa1-Sti1 complex and the ternary Ssa1-Sti1-yHsp90 complex in vitro. The dissociation constant between Sti1 and Ssa1 was determined to be 2 orders of magnitude weaker than the affinity of Sti1 for yHsp90. Surprisingly, binding of Sti1 activates the ATPase of Ssa1 by a factor of about 200, which is in contrast to the behavior of Hop in the mammalian Hsp70 system. Analysis of the underlying activation mechanism revealed that ATP hydrolysis is rate-limiting in the Ssa1 ATPase cycle and that this step is accelerated by Sti1. Thus, Sti1 is a potent novel effector for the Hsp70 ATPase.  相似文献   

10.
There is growing evidence that members of the extended Hsp70 family of molecular chaperones, including the Hsp110 and Grp170 subgroups, collaborate in vivo to carry out essential cellular processes. However, relatively little is known regarding the interactions and cellular functions of Sse1, the yeast Hsp110 homolog. Through co-immunoprecipitation analysis, we found that Sse1 forms heterodimeric complexes with the abundant cytosolic Hsp70s Ssa and Ssb in vivo. Furthermore, these complexes can be efficiently reconstituted in vitro using purified proteins. Binding of Ssa or Ssb to Sse1 was mutually exclusive. The ATPase domain of Sse1 was found to be critical for interaction as inactivating point mutations severely reduced interaction with Ssa and Ssb. Sse1 stimulated Ssa1 ATPase activity synergistically with the co-chaperone Ydj1, and stimulation required complex formation. Ssa1 is required for post-translational translocation of the yeast mating pheromone alpha-factor into the endoplasmic reticulum. Like ssa mutants, we demonstrate that sse1delta cells accumulate prepro-alpha-factor, but not the co-translationally imported protein Kar2, indicating that interaction between Sse1 and Ssa is functionally significant in vivo. These data suggest that the Hsp110 chaperone operates in concert with Hsp70 in yeast and that this collaboration is required for cellular Hsp70 functions.  相似文献   

11.

Background

Autophagy and molecular chaperones both regulate protein homeostasis and maintain important physiological functions. Atg7 (autophagy-related gene 7) and Hsp27 (heat shock protein 27) are involved in the regulation of neurodegeneration and aging. However, the genetic connection between Atg7 and Hsp27 is not known.

Methods

The appearances of the fly eyes from the different genetic interactions with or without polyglutamine toxicity were examined by light microscopy and scanning electronic microscopy. Immunofluorescence was used to check the effect of Atg7 and Hsp27 knockdown on the formation of autophagosomes. The lifespan of altered expression of Hsp27 or Atg7 and that of the combination of the two different gene expression were measured.

Results

We used the Drosophila eye as a model system to examine the epistatic relationship between Hsp27 and Atg7. We found that both genes are involved in normal eye development, and that overexpression of Atg7 could eliminate the need for Hsp27 but Hsp27 could not rescue Atg7 deficient phenotypes. Using a polyglutamine toxicity assay (41Q) to model neurodegeneration, we showed that both Atg7 and Hsp27 can suppress weak, toxic effect by 41Q, and that overexpression of Atg7 improves the worsened mosaic eyes by the knockdown of Hsp27 under 41Q. We also showed that overexpression of Atg7 extends lifespan and the knockdown of Atg7 or Hsp27 by RNAi reduces lifespan. RNAi-knockdown of Atg7 expression can block the extended lifespan phenotype by Hsp27 overexpression, and overexpression of Atg7 can extend lifespan even under Hsp27 knockdown by RNAi.

Conclusions

We propose that Atg7 acts downstream of Hsp27 in the regulation of eye morphology, polyglutamine toxicity, and lifespan in Drosophila.  相似文献   

12.

Background and Aims

The cell cycle is controlled by cyclin-dependent kinases (CDKs), and CDK inhibitors are major regulators of their activities. The ICK/KRP family of CDK inhibitors has been reported in several plants, with seven members in arabidopsis; however, the phylogenetic relationship among members in different species is unknown. Also, there is a need to understand how these genes and proteins are regulated. Furthermore, little information is available on the functional differences among ICK/KRP family members.

Methods

We searched publicly available databases and identified over 120 unique ICK/KRP protein sequences from more than 60 plant species. Phylogenetic analysis was performed using 101 full-length sequences from 40 species and intron–exon organization of ICK/KRP genes in model species. Conserved sequences and motifs were analysed using ICK/KRP protein sequences from arabidopsis (Arabidopsis thaliana), rice (Orysa sativa) and poplar (Populus trichocarpa). In addition, gene expression was examined using microarray data from arabidopsis, rice and poplar, and further analysed by RT-PCR for arabidopsis.

Key Results and Conclusions

Phylogenetic analysis showed that plant ICK/KRP proteins can be grouped into three major classes. Whereas the C-class contains sequences from dicotyledons, monocotyledons and gymnosperms, the A- and B-classes contain only sequences from dicotyledons or monocotyledons, respectively, suggesting that the A- and B-classes might have evolved from the C-class. This classification is also supported by exon–intron organization. Genes in the A- and B- classes have four exons, whereas genes in the C-class have only three exons. Analysis of sequences from arabidopsis, rice and poplar identified conserved sequence motifs, some of which had not been described previously, and putative functional sites. The presence of conserved motifs in different family members is consistent with the classification. In addition, gene expression analysis showed preferential expression of ICK/KRP genes in certain tissues. A model has been proposed for the evolution of this gene family in plants.  相似文献   

13.
Importance of the Hsp70 ATPase domain in yeast prion propagation   总被引:1,自引:0,他引:1       下载免费PDF全文
Loovers HM  Guinan E  Jones GW 《Genetics》2007,175(2):621-630
The Saccharomyces cerevisiae non-Mendelian genetic element [PSI+] is the prion form of the translation termination factor Sup35p. The ability of [PSI+] to propagate efficiently has been shown previously to depend upon the action of protein chaperones. In this article we describe a genetic screen that identifies an array of mutants within the two major cytosolic Hsp70 chaperones of yeast, Ssa1p and Ssa2p, which impair the propagation of [PSI+]. All but one of the mutants was located within the ATPase domain of Hsp70, which highlights the important role of regulation of Hsp70-Ssa ATP hydrolysis in prion propagation. A subset of mutants is shown to alter Hsp70 function in a way that is distinct from that of previously characterized Hsp70 mutants that alter [PSI+] propagation and supports the importance of interdomain communication and Hsp70 interaction with nucleotide exchange factors in prion propagation. Analysis of the effects of Hsp70 mutants upon propagation of a second yeast prion [URE3] further classifies these mutants as having general or prion-specific inhibitory properties.  相似文献   

14.
The yeast [PSI(+)], [URE3], and [PIN(+)] genetic elements are prion forms of Sup35p, Ure2p, and Rnq1p, respectively. Overexpression of Sup35p, Ure2p, or Rnq1p leads to increased de novo appearance of [PSI(+)], [URE3], and [PIN(+)], respectively. This inducible appearance of [PSI(+)] was shown to be dependent on the presence of [PIN(+)] or [URE3] or overexpression of other yeast proteins that have stretches of polar residues similar to the prion-determining domains of the known prion proteins. In a similar manner, [PSI(+)] and [URE3] facilitate the appearance of [PIN(+)]. In contrast to these positive interactions, here we find that in the presence of [PIN(+)], [PSI(+)] and [URE3] repressed each other's propagation and de novo appearance. Elevated expression of Hsp104 and Hsp70 (Ssa2p) had little effect on these interactions, ruling out competition between the two prions for limiting amounts of these protein chaperones. In contrast, we find that constitutive overexpression of SSA1 but not SSA2 cured cells of [URE3], uncovering a specific interaction between Ssa1p and [URE3] and a functional distinction between these nearly identical Hsp70 isoforms. We also find that Hsp104 abundance, which critically affects [PSI(+)] propagation, is elevated when [URE3] is present. Our results are consistent with the notion that proteins that have a propensity to form prions may interact with heterologous prions but, as we now show, in a negative manner. Our data also suggest that differences in how [PSI(+)] and [URE3] interact with Hsp104 and Hsp70 may contribute to their antagonistic interactions.  相似文献   

15.
16.
Heat shock protein 70 is a conserved protein among organisms. Hsp70 helps substrate proteins to fold correctly. Unfolded substrate proteins increase the probability of the aggregate formation. High level recombinant protein expression in biotechnology often leads insoluble inclusion bodies. To prevent aggregation and to obtain high levels of soluble proteins, Hsp co-expression with desired recombinant protein in yeast becomes a popular method. For this purpose, S. cerevesiae cytosolic Hsp70 (Ssa1) biochemical properties were characterized. Alteration of Ssa1 structure between ATP- and ADP-bound states regulates its function. Therefore, conformation-dependent Ssa1 hydrophobicity and as a result aggregation may also play a key role in Ssa1 function. Therefore, a combination of FTIR, acrylamide quenching, and ANS was used to investigate the effect of nucleotide binding on the structure of Ssa1. Ssa1 secondary structure alterations and hydrophobic properties in aqueous solutions with differing ionic strengths and temperature were also studied.  相似文献   

17.

Background and Aims

The successful spread of invasive plants in new environments is often linked to multiple introductions and a diverse gene pool that facilitates local adaptation to variable environmental conditions. For clonal plants, however, phenotypic plasticity may be equally important. Here the primary adaptive strategy in three non-native, clonally reproducing macrophytes (Egeria densa, Elodea canadensis and Lagarosiphon major) in New Zealand freshwaters were examined and an attempt was made to link observed differences in plant morphology to local variation in habitat conditions.

Methods

Field populations with a large phenotypic variety were sampled in a range of lakes and streams with different chemical and physical properties. The phenotypic plasticity of the species before and after cultivation was studied in a common garden growth experiment, and the genetic diversity of these same populations was also quantified.

Key Results

For all three species, greater variation in plant characteristics was found before they were grown in standardized conditions. Moreover, field populations displayed remarkably little genetic variation and there was little interaction between habitat conditions and plant morphological characteristics.

Conclusions

The results indicate that at the current stage of spread into New Zealand, the primary adaptive strategy of these three invasive macrophytes is phenotypic plasticity. However, while limited, the possibility that genetic diversity between populations may facilitate ecotypic differentiation in the future cannot be excluded. These results thus indicate that invasive clonal aquatic plants adapt to new introduced areas by phenotypic plasticity. Inorganic carbon, nitrogen and phosphorous were important in controlling plant size of E. canadensis and L. major, but no other relationships between plant characteristics and habitat conditions were apparent. This implies that within-species differences in plant size can be explained by local nutrient conditions. All together this strongly suggests that invasive clonal aquatic plants adapt to a wide range of habitats in introduced areas by phenotypic plasticity rather than local adaptation.  相似文献   

18.
Fructose-1,6-bisphosphatase (FBPase) is a key regulatory enzyme of gluconeogenesis. In the yeast Saccharomyces cerevisiae, it is only expressed when cells are grown in medium with nonfermentable carbon sources. Addition of glucose to cells leads to inactivation of FBPase and degradation via the ubiquitin-proteasome system. Polyubiquitination of FBPase is carried out by the Gid complex, a multi-subunit ubiquitin ligase. Using tandem affinity purification and subsequent mass spectrometry we identified the Hsp70 chaperone Ssa1 as a novel interaction partner of FBPase. Studies with the temperature-sensitive mutant ssa1-45ts showed that Ssa1 is essential for polyubiquitination of FBPase by the Gid complex. Moreover, we show that degradation of an additional gluconeogenic enzyme, phosphoenolpyruvate carboxykinase, is also affected in ssa1-45ts cells demonstrating that Ssa1 plays a general role in elimination of gluconeogenic enzymes.  相似文献   

19.

Background and Aims Trithuria

is the sole genus of Hydatellaceae, a family of the early-divergent angiosperm lineage Nymphaeales (water-lilies). In this study different arabinogalactan protein (AGP) epitopes in T. submersa were evaluated in order to understand the diversity of these proteins and their functions in flowering plants.

Methods

Immunolabelling of different AGPs and pectin epitopes in reproductive structures of T. submersa at the stage of early seed development was achieved by immunofluorescence of specific antibodies.

Key Results

AGPs in Trithuria pistil tissues could be important as structural proteins and also as possible signalling molecules. Intense labelling was obtained with anti-AGP antibodies both in the anthers and in the intine wall, the latter associated with pollen tube emergence.

Conclusions

AGPs could play a significant role in Trithuria reproduction, due to their specific presence in the pollen tube pathway. The results agree with labellings obtained for Arabidopsis and confirms the importance of AGPs in angiosperm reproductive structures as essential structural components and probably important signalling molecules.  相似文献   

20.

Background

Powdery mildew (PM) is a major fungal disease of thousands of plant species, including many cultivated Rosaceae. PM pathogenesis is associated with up-regulation of MLO genes during early stages of infection, causing down-regulation of plant defense pathways. Specific members of the MLO gene family act as PM-susceptibility genes, as their loss-of-function mutations grant durable and broad-spectrum resistance.

Results

We carried out a genome-wide characterization of the MLO gene family in apple, peach and strawberry, and we isolated apricot MLO homologs through a PCR-approach. Evolutionary relationships between MLO homologs were studied and syntenic blocks constructed. Homologs that are candidates for being PM susceptibility genes were inferred by phylogenetic relationships with functionally characterized MLO genes and, in apple, by monitoring their expression following inoculation with the PM causal pathogen Podosphaera leucotricha.

Conclusions

Genomic tools available for Rosaceae were exploited in order to characterize the MLO gene family. Candidate MLO susceptibility genes were identified. In follow-up studies it can be investigated whether silencing or a loss-of-function mutations in one or more of these candidate genes leads to PM resistance.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-618) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号