首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The second messengers cAMP and cGMP activate their target proteins by binding to a conserved cyclic nucleotide-binding domain (CNBD). Here, we identify and characterize an entirely novel CNBD-containing protein called CRIS (cyclic nucleotide receptor involved in sperm function) that is unrelated to any of the other members of this protein family. CRIS is exclusively expressed in sperm precursor cells. Cris-deficient male mice are either infertile due to a lack of sperm resulting from spermatogenic arrest, or subfertile due to impaired sperm motility. The motility defect is caused by altered Ca2+ regulation of flagellar beat asymmetry, leading to a beating pattern that is reminiscent of sperm hyperactivation. Our results suggest that CRIS interacts during spermiogenesis with Ca2+-regulated proteins that—in mature sperm—are involved in flagellar bending.  相似文献   

3.
4.
Three physiological functions have been described for the skeletal muscle 1,4-dihydropyridine receptor (CaV1.1): (1) voltage-sensor for excitation-contraction (EC) coupling, (2) L-type Ca2+ channel, and (3) voltage-sensor for slow depolarization-dependent Ca2+ entry. Members of the RGK (Rad, Rem, Rem2, Gem/Kir) family of monomeric GTP-binding proteins are potent inhibitors of the former two functions of CaV1.1. However, it is not known whether the latter function that has been attributed to CaV1.1 is subject to modulation by RGK proteins. Thus, the purpose of this study was to determine whether Rad, Gem and/or Rem inhibit the slowly developing, persistent Ca2+ entry that is dependent on the voltage-sensing capability of CaV1.1. As a means to investigate this question, Venus fluorescent protein-fused RGK proteins (V-Rad, V-Rem and V-Gem) were overexpressed in “normal” mouse myotubes. We observed that such overexpression of V-Rad, V-Rem or V-Gem in myotubes caused marked changes in morphology of the cells. As shown previously for YFP-Rem, both L-type current and EC coupling were also impaired greatly in myotubes expressing either V-Rad or V-Gem. The reductions in L-type current and EC coupling were paralleled by reductions in depolarization-induced Ca2+ entry. Our observations provide the first evidence of modulation of this enigmatic Ca2+ entry pathway peculiar to skeletal muscle.  相似文献   

5.
6.
WNK4 (with-no-lysine (K) kinase-4) is present in the distal nephron of the kidney and plays an important role in the regulation of renal ion transport. The epithelial Ca2+ channel TRPV5 (transient receptor potential vanilloid 5) is the gatekeeper of transcellular Ca2+ reabsorption in the distal nephron. Previously, we reported that activation of protein kinase C (PKC) increases cell-surface abundance of TRPV5 by inhibiting caveola-mediated endocytosis of the channel. Here, we report that WNK4 decreases cell-surface abundance of TRPV5 by enhancing its endocytosis. Deletion analysis revealed that stimulation of endocytosis of TRPV5 involves amino acids outside the kinase domain of WNK4. We also investigated interplay between WNK4 and PKC regulation of TRPV5. The maximal level of TRPV5 current density stimulated by the PKC activator 1-oleoyl-acetyl-sn-glycerol (OAG) is the same with or without WNK4. The relative increase of TRPV5 current stimulated by OAG, however, is greater in the presence of WNK4 compared with that without WNK4 (∼215% increase versus 60% increase above the level without OAG). Moreover, the rate of increase of TRPV5 by OAG is faster with WNK4 than without WNK4. The enhanced increase of TRPV5 in the presence of WNK4 is also observed when PKC is activated by parathyroid hormones. Thus, WNK4 exerts tonic inhibition of TRPV5 by stimulating caveola-mediated endocytosis. The lower basal TRPV5 level in the presence of WNK4 allows amplification of the stimulation of channel by PKC. This interaction between WNK4 and PKC regulation of TRPV5 may be important for physiological regulation of renal Ca2+ reabsorption by parathyroid hormones or the tissue kallikrein in vivo.  相似文献   

7.
8.
9.
10.
Type two voltage gated calcium (CaV2) channels are the primary mediators of neurotransmission at neuronal presynapses, but their function at neural soma is also important in regulating excitability.1 Catterall WA. Voltage-gated calcium channels. Cold Spring Harb Perspect Biol. 2011;3:a003947. doi:10.1101/cshperspect.a003947. PMID:21746798[Crossref], [PubMed], [Web of Science ®] [Google Scholar] Mechanisms that regulate CaV2 channel expression at synapses have been studied extensively, which motivated us to perform similar studies in the soma. Rat sympathetic neurons from the superior cervical ganglion (SCG) natively express CaV2.2 and CaV2.3.2 Zhu Y, Ikeda SR. Adenosine modulates voltage-gated Ca2+ channels in adult rat sympathetic neurons. J Neurophysiol. 1993;70:610-20. PMID:8410161[PubMed], [Web of Science ®] [Google Scholar] We noted previously that heterologous expression of CaV2.1 but not CaV2.2 results in increased calcium current in SCG neurons.3 Beqollari D, Kammermeier PJ. The interaction between mGluR1 and the calcium channel Cav(2).(1) preserves coupling in the presence of long Homer proteins. Neuropharmacology. 2013;66:302-10. doi:10.1016/j.neuropharm.2012.05.038. PMID:22659088[Crossref], [PubMed], [Web of Science ®] [Google Scholar] In the present study, we extended these observations to show that both CaV2.1 and CaV2.3 expression resulted in increased calcium currents while CaV2.2 expression did not. Further, CaV2.1 could displace native CaV2.2 channels, but CaV2.3 expression could not. Heterologous expression of the individual accessory subunits α2δ-1, α2δ-2, α2δ-3, or β4 alone failed to increase current density, suggesting that the calcium current ceiling when CaV2.2 was over-expressed was not due to lack of these subunits. Interestingly, introduction of recombinant α2δ subunits produced surprising effects on displacement of native CaV2.2 by recombinant channels. Both α2δ-1 and α2δ-2 seemed to promote CaV2.2 displacement by recombinant channel expression, while α2δ-3 appeared to protect CaV2.2 from displacement. Thus, we observe a selective prioritization of CaV channel functional expression in neurons by specific α2δ subunits. These data highlight a new function for α2δ subtypes that could shed light on subtype selectivity of CaV2 membrane expression.  相似文献   

11.
In most bacteria, two tRNAs decode the four arginine CGN codons. One tRNA harboring a wobble inosine (tRNAArgICG) reads the CGU, CGC and CGA codons, whereas a second tRNA harboring a wobble cytidine (tRNAArgCCG) reads the remaining CGG codon. The reduced genomes of Mycoplasmas and other Mollicutes lack the gene encoding tRNAArgCCG. This raises the question of how these organisms decode CGG codons. Examination of 36 Mollicute genomes for genes encoding tRNAArg and the TadA enzyme, responsible for wobble inosine formation, suggested an evolutionary scenario where tadA gene mutations first occurred. This allowed the temporary accumulation of non-deaminated tRNAArgACG, capable of reading all CGN codons. This hypothesis was verified in Mycoplasma capricolum, which contains a small fraction of tRNAArgACG with a non-deaminated wobble adenosine. Subsets of Mollicutes continued to evolve by losing both the mutated tRNAArgCCG and tadA, and then acquired a new tRNAArgUCG. This permitted further tRNAArgACG mutations with tRNAArgGCG or its disappearance, leaving a single tRNAArgUCG to decode the four CGN codons. The key point of our model is that the A-to-I deamination activity had to be controlled before the loss of the tadA gene, allowing the stepwise evolution of Mollicutes toward an alternative decoding strategy.  相似文献   

12.
SK1 (sphingosine kinase 1) plays an important role in many aspects of cellular regulation. Most notably, elevated cellular SK1 activity leads to increased cell proliferation, protection from apoptosis, and induction of neoplastic transformation. We have previously shown that translocation of SK1 from the cytoplasm to the plasma membrane is integral for oncogenesis mediated by this enzyme. The molecular mechanism mediating this translocation of SK1 has remained undefined. Here, we demonstrate a direct role for CIB1 (calcium and integrin-binding protein 1) in this process. We show that CIB1 interacts with SK1 in a Ca2+-dependent manner at the previously identified “calmodulin-binding site” of SK1. We also demonstrate that CIB1 functions as a Ca2+-myristoyl switch, providing a mechanism whereby it translocates SK1 to the plasma membrane. Both small interfering RNA knockdown of CIB1 and the use of a dominant-negative CIB1 we have generated prevent the agonist-dependent translocation of SK1. Furthermore, we demonstrate the requirement of CIB1-mediated translocation of SK1 in controlling cellular sphingosine 1-phosphate generation and associated anti-apoptotic signaling.  相似文献   

13.
14.
15.
16.
Streptococcus sanguinis, a member of the commensal mitis group of streptococci, is a primary colonizer of the tooth surface, and has been implicated in infectious complications including bacteremia and infective endocarditis. During disease progression, S. sanguinis may utilize various cell surface molecules to evade the host immune system to survive in blood. In the present study, we discovered a novel cell surface nuclease with a cell-wall anchor domain, termed SWAN (streptococcal wall-anchored nuclease), and investigated its contribution to bacterial resistance against the bacteriocidal activity of neutrophil extracellular traps (NETs). Recombinant SWAN protein (rSWAN) digested multiple forms of DNA including NET DNA and human RNA, which required both Mg2+ and Ca2+ for optimum activity. Furthermore, DNase activity of S. sanguinis was detected around growing colonies on agar plates containing DNA. In-frame deletion of the swan gene mostly reduced that activity. These findings indicated that SWAN is a major nuclease displayed on the surface, which was further confirmed by immuno-detection of SWAN in the cell wall fraction. The sensitivity of S. sanguinis to NET killing was reduced by swan gene deletion. Moreover, heterologous expression of the swan gene rendered a Lactococcus lactis strain more resistant to NET killing. Our results suggest that the SWAN nuclease on the bacterial surface contributes to survival in the potential situation of S. sanguinis encountering NETs during the course of disease progression.  相似文献   

17.
Ceramide is a lipid moiety synthesized via the enzymatic activity of ceramide synthases (CerSs), six of which have been identified in mammalian cells, and each of which uses a unique subset of acyl-CoAs for ceramide synthesis. The CerSs are part of a larger gene family, the Tram-Lag-CLN8 domain family. Here, we identify a unique, C-terminal motif, the DxRSDxE motif, which is only found in CerSs and not in other Tram-Lag-CLN8 family members. Deletion of this motif in either CerS2 or in CerS6 did not affect the ability of either enzyme to generate ceramide using both an in vitro assay and metabolic labeling, but deletion of this motif did affect the activity of CerS2 when coexpressed with CerS6. Surprisingly, transfection of cells with either CerS2 or CerS6 lacking the motif did not result in changes in cellular ceramide levels. We found that CerS2 and CerS6 interact with each other, as shown by immunoprecipitation, but deletion of the DxRSDxE motif impeded this interaction. Moreover, proteomics analysis of cells transfected with CerS6Δ338–344 indicated that deletion of the C-terminal motif impacted cellular protein expression, and in particular, the levels of ORMDL1, a negative regulator of sphingolipid synthesis. We suggest that this novel C-terminal motif regulates CerS dimer formation and thereby impacts ceramide synthesis.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号