首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Phenotypic plasticity in parental care investment allows organisms to promptly respond to rapid environmental changes by potentially benefiting offspring survival and thus parental fitness. To date, a knowledge gap exists on whether plasticity in parental care behaviors can mediate responses to climate change in marine ectotherms. Here, we assessed the plasticity of parental care investment under elevated temperatures in a gonochoric marine annelid with biparental care, Ophryotrocha labronica, and investigated its role in maintaining the reproductive success of this species in a warming ocean. We measured the time individuals spent carrying out parental care activities across three phases of embryonic development, as well as the hatching success of the offspring as a proxy for reproductive success, at control (24℃) and elevated (27℃) temperature conditions. Under elevated temperature, we observed: (a) a significant decrease in total parental care activity, underpinned by a decreased in male and simultaneous parental care activity, in the late stage of embryonic development; and (b) a reduction in hatching success that was however not significantly related to changes in parental care activity levels. These findings, along with the observed unaltered somatic growth of parents and decreased brood size, suggest that potential cost‐benefit trade‐offs between offspring survival (i.e., immediate fitness) and parents'' somatic condition (i.e., longer‐term fitness potential) may occur under ongoing ocean warming. Finally, our results suggest that plasticity in parental care behavior is a mechanism able to partially mitigate the negative effects of temperature‐dependent impacts.  相似文献   

2.
Differential allocation occurs when individuals adjust their reproductive investment based on their partner''s traits. However, it remains unknown whether animals differentially allocate based on their partner''s past experiences with predation risk. If animals can detect a potential mate''s experience with predators, this might inform them about the stress level of their potential mate, the likelihood of parental effects in offspring and/or the dangers present in the environment. Using threespined stickleback (Gasterosteus aculeatus), we examined whether a female''s previous experience with being chased by a model predator while yolking eggs affects male mating effort and offspring care. Males displayed fewer conspicuous courtship behaviours towards females that had experienced predation risk in the past compared with unexposed females. This differential allocation extended to how males cared for the resulting offspring of these matings: fathers provided less parental care to offspring of females that had experienced predation risk in the past. Our results show for the first time, to our knowledge, that variation among females in their predator encounters can contribute to behavioural variation among males in courtship and parental care, even when males themselves do not encounter a predator. These results, together with previous findings, suggest that maternal predator exposure can influence offspring development both directly and indirectly, through how it affects father care.  相似文献   

3.
Plasticity in the timing of transitions between stages of complex life cycles allows organisms to adjust their growth and development to local environmental conditions. Genetic variation in such plasticity is common, but the evolution of context‐dependent transition timing may be constrained by information reliability, lag‐time and developmental constraints. We studied the genetic architecture of hatching plasticity in embryos of the red‐eyed treefrog (Agalychnis callidryas) in response to simulated predator attacks using a series of paternal and maternal half‐sibs from a captive breeding colony of wild‐collected animals. We compared the developmental timing of induced early hatching across sibships and estimated cross‐environment genetic correlations between induced and spontaneous hatching traits. Additive genetic variance for induced early hatching was very low, indicating a constraint on the short‐term evolution of earlier hatching timing. This constraint is likely related to the maturation of the hatching mechanism. The most plastic genotypes produced the most extreme spontaneous hatching phenotypes, indicating that developmental range, per se, is not constrained. Cross‐environment genetic correlation in hatching timing was negligible, so the evolution of spontaneous hatching in this species has not depended on the evolution of risk‐induced hatching and vice versa.  相似文献   

4.
Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, then apply it to a case of predator-induced hatching. Red-eyed treefrogs have arboreal eggs, and tadpoles fall into ponds upon hatching. Egg and tadpole predators select for earlier and later hatching, respectively. Embryos hatch up to 30% early in predator attacks, and later if undisturbed. They maintain large external gills throughout the plastic hatching period, delaying gill regression while development otherwise continues. Rapid gill regression occurs upon hatching. Prolonged embryonic development depends on external gills; inducing gill regression causes hatching. External hypoxia retards development, kills eggs, and induces hatching. Nonetheless, embryos develop synchronously and without hatching prematurely across a broad range of perivitelline PO2, from 0.5-12.5 kPa. Embryos exploit spatial variation of PO2 within eggs by positioning gills against patches of air-exposed surface. Respiratory plasticity and oxygen-sensitive behavior appear critical for the hatching plasticity that balances a predation risk trade-off across life stages.  相似文献   

5.
Evolutionary theory predicts that differences in parental care patterns among species arose from interspecific differences in the costs and benefits of care for each sex. In Galilee St Peter''s fish, Sarotherodon galilaeus (Cichlidae), male care, female care and biparental care all occur in the same population. We exploit this unusual variability to isolate conditions favouring biparental versus uniparental mouth-brooding by males or females. We first review a game-theoretic model of parental care evolution, predictions of which we test experimentally in this paper. Manipulations of the operational sex ratio show that males and females desert their offspring more frequently when the costs of care are high (in terms of lost mating opportunities). Breeding trials with males of different sizes show that small fathers desert more frequently than large fathers. We attribute this to the associated difference in the fitness benefit of biparental care relative to female-only care. Our experimental results confirm that in St Peter''s fish the probability of caring is determined facultatively according to current conditions at each spawn. The experiments and model together suggest that interspecific variation in remating opportunities and clutch size may be responsible for differences in care patterns within the sub-family Tilapiini. Our results support the hypothesis that biparental mouth-brooding was the ancestral state of both male and female uniparental mouth-brooding in cichlid fishes.  相似文献   

6.
Inbreeding depression is defined as a fitness decline in progeny resulting from mating between related individuals, the severity of which may vary across environmental conditions. Such inbreeding‐by‐environment interactions might reflect that inbred individuals have a lower capacity for adjusting their phenotype to match different environmental conditions better, as shown in prior studies on developmental plasticity. Behavioural plasticity is more flexible than developmental plasticity because it is reversible and relatively quick, but little is known about its sensitivity to inbreeding. Here, we investigate effects of inbreeding on behavioural plasticity in the context of parent–offspring interactions in the burying beetle Nicrophorus vespilloides. Larvae increase begging with the level of hunger, and parents increase their level of care when brood sizes increase. Here, we find that inbreeding increased behavioural plasticity in larvae: inbred larvae reduced their time spent associating with a parent in response to the length of food deprivation more than outbred larvae. However, inbreeding had no effect on the behavioural plasticity of offspring begging or any parental behaviour. Overall, our results show that inbreeding can increase behavioural plasticity. We suggest that inbreeding‐by‐environment interactions might arise when inbreeding is associated with too little or too much plasticity in response to changing environmental conditions.  相似文献   

7.
Many species alter the timing of hatching in response to egg or larval predators, pathogens, or physical risks. This plasticity depends on separation between the onset of hatching competence and physiological limits to embryonic development. I present a framework based on heterokairy to categorize developmental mechanisms and identify traits contributing to and limiting hatching plasticity, then apply it to a case of predator-induced hatching. Red-eyed treefrogs have arboreal eggs, and tadpoles fall into ponds upon hatching. Egg and tadpole predators select for earlier and later hatching, respectively. Embryos hatch up to 30% early in predator attacks, and later if undisturbed. They maintain large external gills throughout the plastic hatching period, delaying gill regression while development otherwise continues. Rapid gill regression occurs upon hatching. Prolonged embryonic development depends on external gills; inducing gill regression causes hatching. External hypoxia retards development, kills eggs, and induces hatching. Nonetheless, embryos develop synchronously and without hatching prematurely across a broad range of perivitelline PO2, from 0.5–12.5 kPa. Embryos exploit spatial variation of PO2 within eggs by positioning gills against patches of air-exposed surface. Respiratory plasticity and oxygen-sensitive behavior appear critical for the hatching plasticity that balances a predation risk trade-off across life stages.  相似文献   

8.
An important unresolved question is how populations of coldwater‐dependent fishes will respond to rapidly warming water temperatures. For example, the culturally and economically important group, Pacific salmon (Oncorhynchus spp.), experience site‐specific thermal regimes during early development that could be disrupted by warming. To test for thermal local adaptation and heritable phenotypic plasticity in Pacific salmon embryos, we measured the developmental rate, survival, and body size at hatching in two populations of sockeye salmon (Oncorhynchus nerka) that overlap in timing of spawning but incubate in contrasting natural thermal regimes. Using a split half‐sibling design, we exposed embryos of 10 families from each of two populations to variable and constant thermal regimes. These represented both experienced temperatures by each population, and predicted temperatures under plausible future conditions based on a warming scenario from the downscaled global climate model (MIROC A1B scenario). We did not find evidence of thermal local adaptation during the embryonic stage for developmental rate or survival. Within treatments, populations hatched within 1 day of each other, on average, and among treatments, did not differ in survival in response to temperature. We did detect plasticity to temperature; embryos developed 2.5 times longer (189 days) in the coolest regime compared to the warmest regime (74 days). We also detected variation in developmental rates among families within and among temperature regimes, indicating heritable plasticity. Families exhibited a strong positive relationship between thermal variability and phenotypic variability in developmental rate but body length and mass at hatching were largely insensitive to temperature. Overall, our results indicated a lack of thermal local adaptation, but a presence of plasticity in populations experiencing contrasting conditions, as well as family‐specific heritable plasticity that could facilitate adaptive change.  相似文献   

9.
Accelerated hatching is one of few defences available to embryos, and is effective against many egg-stage risks. We present the first analysis of genetic variation in hatching plasticity, examining premature hatching of American toad embryos in response to pathogenic water moulds. We reared eggs from half- and full-sib families in the presence and absence of water mould. Hatching age and hatchling size showed low cross-environment genetic correlations, suggesting that early-induced hatching can evolve largely independently of spontaneous hatching. We found less phenotypic and additive genetic variation for early-induced hatching than spontaneous hatching, and a stronger correlation between egg and induced hatchling sizes. Directional selection by the pathogen may have eroded variation in early-induced hatching, pushing it against the constraint of hatching gland development. Later hatching has a second, muscular component. This pattern of variation may characterize defences based on developmental transitions, although other inducible defences show more variation in induced phenotypes.  相似文献   

10.
California grunion Leuresthes tenuis synchronize spawning with tidal cycles, so the embryos incubate in a terrestrial environment, delay hatching until cued by a specific environmental trigger, and may extend incubation for up to an additional four weeks. These adaptations, however, do not appear to alter the morphology or sequence of early developmental stages as compared to other Atherinomorph fishes in the Orders Beloniformes and Cyprinodontiformes. Embryonic development is described in a series of 30 stages based on morphology observed by light microscopy. Stages are placed in five periods: zygote and cleavage, blastula, gastrula, segmentation and organogenesis, and hatching competence. Embryos from a southern population of L. tenuis in Los Angeles are compared with embryos found >560 km north in San Francisco Bay. Northern L. tenuis embryos developed more slowly at several stages than southern embryos and reached hatching competence later, but both locations maintained synchrony with the tidal cycle for both spawning and hatching. The variation in rates of development and stage at hatching readiness are forms of developmental heterochrony that may be associated with evolutionary adaptation or morphological plasticity within this highly successful clade.  相似文献   

11.
Environmentally cued hatching has been well-documented in amphibians in response to a wide range of abiotic and biotic factors. The hatching of terrestrial amphibian eggs in response to flooding may be basal within the group, but amphibian lineages in tropical Asia and sub-Saharan Africa have not received as much attention as their Neotropical counterparts. We investigated submergence-induced hatching in Feihyla hansenae, a Rhacophorid tree frog with terrestrial eggs. We quantified natural rates of clutch submergence at our study site in Thailand. Using submergence experiments, we found that embryos are capable of hatching early to escape flooding, and that failure to hatch results in mortality. Among the embryos that were able to hatch early, only the earliest, youngest hatchlings experienced a trade-off in body size that persisted for 6 days, while later, older hatchlings were not significantly smaller than spontaneous hatchlings under control conditions. By incorporating our natural and experimental data into Monte Carlo methods to simulate and compare survival probabilities with and without hatching plasticity, we found an overall 3.1% increase in submergence survival due to hatching plasticity. Our findings support the idea that flooding-induced hatching is widespread across amphibians with terrestrial eggs and highlight the importance of researching understudied tropical regions. As climate change is projected to affect rainfall patterns, the ability of embryos to escape abiotic egg-stage threats may be an indicator of species' ability to flexibly navigate a changing environment.  相似文献   

12.
Phenotypic plasticity might influence evolutionary processes such as adaptive radiations. Plasticity in parental care might be especially effective in facilitating adaptive radiations if it allows populations to persist in novel environments. Here, we test the hypothesis that behavioral plasticity by parents in response to predation risk facilitated the adaptive radiation of three‐spine sticklebacks. We compared the behavior of fathers across multiple ancestral (marine) and derived (freshwater) stickleback populations that differ in time since establishment. We measured behavioral plasticity in fathers in response to a predator found only in freshwater environments, simulating conditions marine males experience when colonizing freshwater. The antipredator behavior of males from newly established freshwater populations was intermediate between marine populations and well‐established freshwater populations. In contrast to our predictions, on average, there was greater behavioral plasticity in derived freshwater populations than in ancestral marine populations. However, we found greater individual variation in behavioral reaction norms in marine populations compared to well‐established freshwater populations, with newly established freshwater populations intermediate. This suggests that standing variation in behavioral reaction norms within ancestral populations might provide different evolutionary trajectories, and illustrates how plasticity can contribute to adaptive radiations.  相似文献   

13.
The evolution of parental care is beneficial if it facilitates offspring performance traits that are ultimately tied to offspring fitness. While this may seem self‐evident, the benefits of parental care have received relatively little theoretical exploration. Here, we develop a theoretical model that elucidates how parental care can affect offspring performance and which aspects of offspring performance (e.g., survival, development) are likely to be influenced by care. We begin by summarizing four general types of parental care benefits. Care can be beneficial if parents (1) increase offspring survival during the stage in which parents and offspring are associated, (2) improve offspring quality in a way that leads to increased offspring survival and/or reproduction in the future when parents are no longer associated with offspring, and/or (3) directly increase offspring reproductive success when parents and offspring remain associated into adulthood. We additionally suggest that parental control over offspring developmental rate might represent a substantial, yet underappreciated, benefit of care. We hypothesize that parents adjust the amount of time offspring spend in life‐history stages in response to expected offspring mortality, which in turn might increase overall offspring survival, and ultimately, fitness of parents and offspring. Using a theoretical evolutionary framework, we show that parental control over offspring developmental rate can represent a significant, or even the sole, benefit of care. Considering this benefit influences our general understanding of the evolution of care, as parental control over offspring developmental rate can increase the range of life‐history conditions (e.g., egg and juvenile mortalities) under which care can evolve.  相似文献   

14.
Knowledge of how genetic effects arising from parental care influence the evolution of offspring traits comes almost exclusively from studies of maternal care. However, males provide care in some taxa, and often this care differs from females in quality or quantity. If variation in paternal care is genetically based then, like maternal care and maternal effects, paternal effects may have important consequences for the evolution of offspring traits via indirect genetic effects (IGEs). IGEs and direct–indirect genetic covariances associated with parental care can contribute substantially to total heritability and influence predictions about how traits respond to selection. It is unknown, however, if the magnitude and sign of parental effects arising from fathers are the same as those arising from mothers. We used a reciprocal cross‐fostering experiment to quantify environmental and genetic effects of paternal care on offspring performance in the burying beetle, Nicrophorus vespilloides. We found that IGEs were substantial and direct–indirect genetic covariances were negative. Combined, these patterns led to low total heritabilities for offspring performance traits. Thus, under paternal care, offspring performance traits are unlikely to evolve in response to selection, and variation in these traits will be maintained in the population despite potentially strong selection on these traits. These patterns are similar to those generated by maternal care, indicating that the genetic effects of care on offspring performance are independent of the caregiver's sex.  相似文献   

15.
For species with complex life cycles, transitions between life stages result in niche shifts that are often associated with evolutionary trade-offs. When conditions across life stages are unpredictable, plasticity in niche shift timing may be adaptive; however, factors associated with clutch identity (e.g., genetic or maternal) may influence the effects of such plasticity. The red-eyed treefrog (Agalychnis callidryas) is an ideal organism for investigating the effects of genetics and life stage switch point timing because embryos exhibit adaptive phenotypic plasticity in hatching time. In this study, we evaluated the effects of experimentally manipulated hatching time and clutch identity on antipredator behavior of tadpoles and on developmental traits of metamorphs, including larval period, mass, SVL, and jumping ability. We found that in the presence of dragonfly nymph predator cues at 21 days post-oviposition, tadpoles reduced both their activity level and height in the water column. Furthermore, early-hatched tadpoles were less active than late-hatched tadpoles of the same age. This difference in behavior patterns of early- and late-hatched tadpoles may represent an adaptive response due to a longer period of susceptibility to odonate predators for early-hatched tadpoles, or it may be a carry-over effect mediated by early exposure to an environmental stressor (i.e., induction of early hatching). We also found that hatching time affected both behavioral traits and developmental traits, but its effect on developmental traits varied significantly among clutches. This study shows that a single early-life event may influence a suite of factors during subsequent life stages and that some of these effects appear to be dependent on clutch identity. This interaction may represent an evolutionary response to a complex life cycle and unpredictable environments, regardless of whether the clutch differences are due to additive genetic variance or maternal effects.  相似文献   

16.
Predator-induced hatching plasticity has been demonstrated in many species of amphibians. However, animals from other clades (e.g., marine species of molluscs and annelids) also place their embryos in capsules or gelatinous masses and might also exhibit hatching plasticity to predators. To date there is no evidence of predator-induced hatching plasticity from any marine species or a major clade of bilateria animals, the Lophotrochozoa. We studied predator-induced hatching plasticity of Nucella lamellosa, a carnivorous marine snail that deposits embryos in capsules. We used two experiments to investigate the effects of two types of predator, crabs and isopods, on developing embryos. In the first experiment, we quantified proportion of hatched embryos from capsules through time exposed to water-borne chemicals of crabs and isopods. Crabs delayed time-to-hatching, and the effects of predators were additive. In the second experiment, we quantified proportion of hatched embryos from capsules through time, developmental stage, and size of embryos in capsules exposed to water-borne chemicals of crabs and conspecifics. With this experiment, we wanted to answer: (1) whether a delay in hatching corresponded to embryos developing slower, and (2) whether the general products of metabolic waste from organisms can delay hatching. We unexpectedly observed that adult conspecific snails accelerated hatching but not developmental rate—the few past studies on the effects of conspecifics have all demonstrated that conspecifics delay time-to-hatching and rate of development. The results were also inconsistent with metabolic waste in general causing a delay in hatching, although the effect of conspecifics does weaken this inference. This study demonstrates that predators delay time-to-hatching in a marine mollusc, and suggests that predator-induced hatching plasticity is widespread among animals and likely evolved multiple times within the bilateria. In addition, conspecifics accelerated time-to-hatching in a marine mollusc, which suggests that conspecifics, like predators, might commonly influence when embryos hatch.  相似文献   

17.
There is increasing evidence that exposure to stress during development can have sustained effects on animal phenotype and performance across life-history stages. For example, developmental stress has been shown to decrease the quality of sexually selected traits (e.g. bird song), and therefore is thought to decrease reproductive success. However, animals exposed to developmental stress may compensate for poor quality sexually selected traits by pursuing alternative reproductive tactics. Here, we examine the effects of developmental stress on adult male reproductive investment and success in the zebra finch (Taeniopygia guttata). We tested the hypothesis that males exposed to developmental stress sire fewer offspring through extra-pair copulations (EPCs), but invest more in parental care. To test this hypothesis, we fed nestlings corticosterone (CORT; the dominant avian stress hormone) during the nestling period and measured their adult reproductive success using common garden breeding experiments. We found that nestlings reared by CORT-fed fathers received more parental care compared with nestlings reared by control fathers. Consequently, males fed CORT during development reared nestlings in better condition compared with control males. Contrary to the prediction that developmental stress decreases male reproductive success, we found that CORT-fed males also sired more offspring and were less likely to rear non-genetic offspring compared with control males, and thus had greater overall reproductive success. These data are the first to demonstrate that developmental stress can have a positive effect on fitness via changes in reproductive success and provide support for an adaptive role of developmental stress in shaping animal phenotype.  相似文献   

18.
Superb fairy-wren (Malurus cyaneus) females use an incubation call to teach their embryos a vocal password to solicit parental feeding care after hatching. We previously showed that high call rate by the female was correlated with high call similarity in fairy-wren chicks, but not in cuckoo chicks, and that parent birds more often fed chicks with high call similarity. Hosts should be selected to increase their defence behaviour when the risk of brood parasitism is highest, such as when cuckoos are present in the area. Therefore, we experimentally test whether hosts increase call rate to embryos in the presence of a singing Horsfield''s bronze-cuckoo (Chalcites basalis). Female fairy-wrens increased incubation call rate when we experimentally broadcast cuckoo song near the nest. Embryos had higher call similarity when females had higher incubation call rate. We interpret the findings of increased call rate as increased teaching effort in response to a signal of threat.  相似文献   

19.
Background and AimsThe observed positive diversity effect on ecosystem functioning has rarely been assessed in terms of intraspecific trait variability within populations. Intraspecific phenotypic variability could stem both from underlying genetic diversity and from plasticity in response to environmental cues. The latter might derive from modifications to a plant’s epigenome and potentially last multiple generations in response to previous environmental conditions. We experimentally disentangled the role of genetic diversity and diversity of parental environments on population productivity, resistance against environmental fluctuations and intraspecific phenotypic variation.MethodsA glasshouse experiment was conducted in which different types of Arabidopsis thaliana populations were established: one population type with differing levels of genetic diversity and another type, genetically identical, but with varying diversity levels of the parental environments (parents grown in the same or different environments). The latter population type was further combined, or not, with experimental demethylation to reduce the potential epigenetic diversity produced by the diversity of parental environments. Furthermore, all populations were each grown under different environmental conditions (control, fertilization and waterlogging). Mortality, productivity and trait variability were measured in each population.Key ResultsParental environments triggered phenotypic modifications in the offspring, which translated into more functionally diverse populations when offspring from parents grown under different conditions were brought together in mixtures. In general, neither the increase in genetic diversity nor the increase in diversity of parental environments had a remarkable effect on productivity or resistance to environmental fluctuations. However, when the epigenetic variation was reduced via demethylation, mixtures were less productive than monocultures (i.e. negative net diversity effect), caused by the reduction of phenotypic differences between different parental origins.ConclusionsA diversity of environmental parental origins within a population could ameliorate the negative effect of competition between coexisting individuals by increasing intraspecific phenotypic variation. A diversity of parental environments could thus have comparable effects to genetic diversity. Disentangling the effect of genetic diversity and that of parental environments appears to be an important step in understanding the effect of intraspecific trait variability on coexistence and ecosystem functioning.  相似文献   

20.
In the wet-dry tropics of northern Australia, temperatures are high and stable year-round but monsoonal rainfall is highly seasonal and variable both annually and spatially. Many features of reproduction in vertebrates of this region may be adaptations to dealing with this unpredictable variation in precipitation, notably by (i) using direct proximate (rainfall-affected) cues to synchronize the timing and extent of breeding with rainfall events, (ii) placing the eggs or offspring in conditions where they will be buffered from rainfall extremes, and (iii) evolving developmental plasticity, such that the timing and trajectory of embryonic differentiation flexibly respond to local conditions. For example, organisms as diverse as snakes (Liasis fuscus, Acrochordus arafurae), crocodiles (Crocodylus porosus), birds (Anseranas semipalmata) and wallabies (Macropus agilis) show extreme annual variation in reproductive rates, linked to stochastic variation in wet season rainfall. The seasonal timing of initiation and cessation of breeding in snakes (Tropidonophis mairii) and rats (Rattus colletti) also varies among years, depending upon precipitation. An alternative adaptive route is to buffer the effects of rainfall variability on offspring by parental care (including viviparity) or by judicious selection of nest sites in oviparous taxa without parental care. A third type of adaptive response involves flexible embryonic responses (including embryonic diapause, facultative hatching and temperature-dependent sex determination) to incubation conditions, as seen in squamates, crocodilians and turtles. Such flexibility fine-tunes developmental rates and trajectories to conditions--especially, rainfall patterns--that are not predictable at the time of oviposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号