首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The cytokine interleukin-3 (IL-3) is a critical regulator of inflammation and immune responses in mammals. IL-3 exerts its effects on target cells via receptors comprising an IL-3-specific α-subunit and common β-subunit (βc; shared with IL-5 and granulocyte-macrophage colony-stimulating factor) or a β-subunit that specifically binds IL-3 (βIL-3; present in mice but not humans). We recently identified two splice variants of the α-subunit of the IL-3 receptor (IL-3Rα) that are relevant to hematopoietic progenitor cell differentiation or proliferation: the full length (“SP1” isoform) and a novel isoform (denoted “SP2”) lacking the N-terminal Ig-like domain. Although our studies demonstrated that each mouse IL-3 (mIL-3) Rα isoform can direct mIL-3 binding to two distinct sites on the βIL-3 subunit, it has remained unclear which residues in mIL-3 itself are critical to the two modes of βIL-3 recognition and whether the human IL-3Rα SP1 and SP2 orthologs similarly instruct human IL-3 binding to two distinct sites on the human βc subunit. Herein, we describe the identification of residues clustering around the highly conserved A-helix residue, Glu23, in the mIL-3 A- and C-helices as critical for receptor binding and growth stimulation via the βIL-3 and mIL-3Rα SP2 subunits, whereas an overlapping cluster was required for binding and activation of βIL-3 in the presence of mIL-3Rα SP1. Similarly, our studies of human IL-3 indicate that two different modes of βc binding are utilized in the presence of the hIL-3Rα SP1 or SP2 isoforms, suggesting a possible conserved mechanism by which the relative orientations of receptor subunits are modulated to achieve distinct signaling outcomes.  相似文献   

2.
GlcNAc-1-phosphotransferase is a Golgi-resident 540-kDa complex of three subunits, α2β2γ2, that catalyze the first step in the formation of the mannose 6-phosphate (M6P) recognition marker on lysosomal enzymes. Anti-M6P antibody analysis shows that human primary macrophages fail to generate M6P residues. Here we have explored the sorting and intracellular targeting of cathepsin D as a model, and the expression of the GlcNAc-1-phosphotransferase complex in macrophages. Newly synthesized cathepsin D is transported to lysosomes in an M6P-independent manner in association with membranes whereas the majority is secreted. Realtime PCR analysis revealed a 3–10-fold higher GlcNAc-1-phosphotransferase subunit mRNA levels in macrophages than in fibroblasts or HeLa cells. At the protein level, the γ-subunit but not the β-subunit was found to be proteolytically cleaved into three fragments which form irregular 97-kDa disulfide-linked oligomers in macrophages. Size exclusion chromatography showed that the γ-subunit fragments lost the capability to assemble with other GlcNAc-1-phosphotransferase subunits to higher molecular complexes. These findings demonstrate that proteolytic processing of the γ-subunit represents a novel mechanism to regulate GlcNAc-1-phosphotransferase activity and the subsequent sorting of lysosomal enzymes.  相似文献   

3.
The mechanism of chain selection and trimerization of fibril-associated collagens with interrupted triple helices (FACITs) differs from that of fibrillar collagens that have special C-propeptides. We recently showed that the second carboxyl-terminal non-collagenous domain (NC2) of homotrimeric collagen XIX forms a stable trimer and substantially stabilizes a collagen triple helix attached to either end. We then hypothesized a general trimerizing role for the NC2 domain in other FACITs. Here we analyzed the NC2 domain of human heterotrimeric collagen IX, the only member of FACITs with all three chains encoded by distinct genes. Upon oxidative folding of equimolar amounts of the α1, α2, and α3 chains of NC2, a stable heterotrimer with a disulfide bridge between α1 and α3 chains is formed. Our experiments show that this heterotrimerization domain can stabilize a short triple helix attached at the carboxyl-terminal end and allows for the proper oxidation of the cystine knot of type III collagen after the short triple helix.  相似文献   

4.
Proteins are frequently modified by post-translational methylation of lysine residues, catalyzed by S-adenosylmethionine-dependent lysine methyltransferases (KMTs). Lysine methylation of histone proteins has been extensively studied, but it has recently become evident that methylation of non-histone proteins is also abundant and important. The human methyltransferase METTL20 belongs to a group of 10 established and putative human KMTs. We here found METTL20 to be associated with mitochondria and determined that recombinant METTL20 methylated a single protein in extracts from human cells. Using an methyltransferase activity-based purification scheme, we identified the β-subunit of the mitochondrially localized electron transfer flavoprotein (ETFβ) as the substrate of METTL20. Furthermore, METTL20 was found to specifically methylate two adjacent lysine residues, Lys200 and Lys203, in ETFβ both in vitro and in cells. Interestingly, the residues methylated by METTL20 partially overlap with the so-called “recognition loop” in ETFβ, which has been shown to mediate its interaction with various dehydrogenases. Accordingly, we found that METTL20-mediated methylation of ETFβ in vitro reduced its ability to receive electrons from the medium chain acyl-CoA dehydrogenase and the glutaryl-CoA dehydrogenase. In conclusion, the present study establishes METTL20 as the first human KMT localized to mitochondria and suggests that it may regulate cellular metabolism through modulating the interaction between its substrate ETFβ and dehydrogenases. Based on the previous naming of similar enzymes, we suggest the renaming of human METTL20 to ETFβ-KMT.  相似文献   

5.
6.
Transmitter molecules bind to synaptic acetylcholine receptor channels (AChRs) to promote a global channel-opening conformational change. Although the detailed mechanism that links ligand binding and channel gating is uncertain, the energy changes caused by mutations appear to be more symmetrical between subunits in the transmembrane domain compared with the extracellular domain. The only covalent connection between these domains is the pre-M1 linker, a stretch of five amino acids that joins strand β10 with the M1 helix. In each subunit, this linker has a central Arg (Arg3′), which only in the non-α-subunits is flanked by positively charged residues. Previous studies showed that mutations of Arg3′ in the α-subunit alter the gating equilibrium constant and reduce channel expression. We recorded single-channel currents and estimated the gating rate and equilibrium constants of adult mouse AChRs with mutations at the pre-M1 linker and the nearby residue Glu45 in non-α-subunits. In all subunits, mutations of Arg3′ had similar effects as in the α-subunit. In the ϵ-subunit, mutations of the flanking residues and Glu45 had only small effects, and there was no energy coupling between ϵGlu45 and ϵArg3′. The non-α-subunit Arg3′ residues had Φ-values that were similar to those for the α-subunit. The results suggest that there is a general symmetry between the AChR subunits during gating isomerization in this linker and that the central Arg is involved in expression more so than gating. The energy transfer through the AChR during gating appears to mainly involve Glu45, but only in the α-subunits.  相似文献   

7.
Epithelial cells lining the gastrointestinal tract and kidney have different abilities to facilitate paracellular and transcellular transport of water and solutes. In the kidney, the proximal tubule allows both transcellular and paracellular transport, while the collecting duct primarily facilitates transcellular transport. The claudins and E-cadherin are major structural and functional components regulating paracellular transport. In this study we present the novel finding that the transmembrane matrix receptors, integrins, play a role in regulating paracellular transport of renal proximal tubule cells. Deleting the integrin β1 subunit in these cells converts them from a “loose” epithelium, characterized by low expression of E-cadherin and claudin-7 and high expression of claudin-2, to a “tight” epithelium with increased E-cadherin and claudin-7 expression and decreased claudin-2 expression. This effect is mediated by the integrin β1 cytoplasmic tail and does not entail β1 heterodimerization with an α-subunit or its localization to the cell surface. In addition, we demonstrate that deleting the β1 subunit in the proximal tubule of the kidney results in a major urine-concentrating defect. Thus, the integrin β1 tail plays a key role in regulating the composition and function of tight and adherens junctions that define paracellular transport properties of terminally differentiated renal proximal tubule epithelial cells.  相似文献   

8.
The Arp2/3 (actin-related protein 2/3) complex nucleates branched actin filaments involved in multiple cellular functions, including endocytosis and cellular motility. Two subunits (Arp2 and Arp3) in this seven-subunit assembly are closely related to actin and upon activation of the complex form a “cryptic dimer” that stably mimics an actin dimer to nucleate a new filament. Both Arps contain a shared actin core structure, and each Arp contains multiple insertions of unknown function at conserved positions within the core. Here we characterize three key insertions within the actin core of Arp3 and show that each one plays a distinct role in modulating Arp2/3 function. The β4/β5 insert mediates interactions of Arp2/3 complex with actin filaments and “dampers” the nucleation activity of the complex. The Arp3 hydrophobic plug plays an important role in maintaining the integrity of the complex but is not absolutely required for formation of the daughter filament nucleus. Deletion of the αK/β15 insert did not constitutively activate the complex, as previously hypothesized. Instead, it abolished in vitro nucleation activity and caused defects in endocytic actin patch assembly in fission yeast, indicating a role for the αK/β15 insert in the activated state of the complex. Biochemical characterization of each mutant revealed steps in the nucleation pathway influenced by each Arp3-specific insert to provide new insights into the structural basis of activation of the complex.  相似文献   

9.
The human organic solute transporter (hOST) is a heterodimer composed of alpha and beta subunits. Physical association of hOSTα and β subunits is essential for their polarized basolateral plasma membrane localization and function in the export of bile acids and steroids. To understand the role of carboxyl- and amino-tails of OSTβ and mechanisms underlying membrane localization of hOST, the effects of tail deletion of the hOSTβ subunit and biological reagents on membrane distribution and transport function of hOST were investigated in stably transfected MDCK cells. After deletion of 35 amino acids from the amino-tail of hOSTβ, the efflux transport activity and polarized membrane distribution of the truncated hOSTβ was abolished. A co-immunoprecipitation study verified that the amino-tail of hOSTβ is essential for the association with hOSTα subunit. Treatments with acytochalasin D (interrupting ctin-filaments), bafilomycin A1 (inhibiting vacuolar H+-ATPase), brefeldin A (disrupting the Golgi complex), and calphostin C (inhibiting protein kinase C), significantly disrupted the polarized membrane distribution of hOST and markedly reduced transport activity in stably transfected MDCK cells. In summary, the 35 amino acid amino-terminal fragment of hOSTβ contains critical information for interaction with the hOSTα subunit and subsequent trafficking to the plasma membrane. These studies suggest that the membrane sorting process of hOST is mediated by a bafilomycin A1-sensitive vesicular pathway that is associated with the actin-cytoskeleton network. The membrane localization of hOST is also partially mediated through a brefeldin A sensitive mechanism, which controls its transit from the ER to Golgi and is regulated by PKC.  相似文献   

10.
Hack E  Leaver CJ 《The EMBO journal》1983,2(10):1783-1789
The F1-ATPase complex has been purified from maize (Zea mays L.) mitochondria and shown to consist of five subunits with mol. wts. of 58 000 (α), 56 000 (β), 35 000 (γ), 22 000 (δ) and 8000 (ε). The α-subunit co-migrates on one- and two- dimensional isoelectric focussing-SDS polyacrylamide gels with the major polypeptide synthesised by isolated mitochondria. One-dimensional proteolytic peptide mapping and immunoprecipitation confirms that the α-subunit is a mitochondrial translation product and therefore presumably encoded in mitochondrial DNA. This contrasts with the situation in animal and fungal cells where all five subunits of the F1-ATPase are encoded by the nuclear genome and synthesised on cytosolic ribosomes.  相似文献   

11.
The eukaryotic translation initiation factor 2 (eIF2) has key functions in the initiation step of protein synthesis. eIF2 guides the initiator tRNA to the ribosome, participates in scanning of the mRNA molecule, supports selection of the start codon, and modulates the translation of mRNAs in response to stress. eIF2 comprises a heterotrimeric complex whose assembly depends on the ATP-grasp protein Cdc123. Mutations of the eIF2γ subunit that compromise eIF2 complex formation cause severe neurological disease in humans. To this date, however, details about the assembly mechanism, step order, and the individual functions of eIF2 subunits remain unclear. Here, we quantified assembly intermediates and studied the behavior of various binding site mutants in budding yeast. Based on these data, we present a model in which a Cdc123-mediated conformational change in eIF2γ exposes binding sites for eIF2α and eIF2β subunits. Contrary to an earlier hypothesis, we found that the associations of eIF2α and eIF2β with the γ-subunit are independent of each other, but the resulting heterodimers are nonfunctional and fail to bind the guanosine exchange factor eIF2B. In addition, levels of eIF2α influence the rate of eIF2 assembly. By binding to eIF2γ, eIF2α displaces Cdc123 and thereby completes the assembly process. Experiments in human cell culture indicate that the mechanism of eIF2 assembly is conserved between yeast and humans. This study sheds light on an essential step in eukaryotic translation initiation, the dysfunction of which is linked to human disease.  相似文献   

12.
Zhang X  Ma J  Berkowitz GA 《Plant physiology》1999,121(3):995-1002
Animal K+ channel α- (pore-forming) subunits form native proteins by association with β-subunits, which are thought to affect channel function by modifying electrophysiological parameters of currents (often by inducing fast inactivation) or by stabilizing the protein complex. We evaluated the functional association of KAT1, a plant K+ channel α-subunit, and KAB1 (a putative homolog of animal K+ channel β-subunits) by co-expression in Xenopus laevis oocytes. Oocytes expressing KAT1 displayed inward-rectifying, non-inactivating K+ currents that were similar in magnitude to those reported in prior studies. K+ currents recorded from oocytes expressing both KAT1 and KAB1 had similar gating kinetics. However, co-expression resulted in greater total current, consistent with the possibility that KAB1 is a β-subunit that stabilizes and therefore enhances surface expression of K+ channel protein complexes formed by α-subunits such as KAT1. K+ channel protein complexes formed by α-subunits such as KAT1 that undergo (voltage-dependent) inactivation do so by means of a “ball and chain” mechanism; the ball portion of the protein complex (which can be formed by the N terminus of either an α- or β-subunit) occludes the channel pore. KAT1 was co-expressed in oocytes with an animal K+ channel α-subunit (hKv1.4) known to contain the N-terminal ball and chain. Inward currents through heteromeric hKv1.4:KAT1 channels did undergo typical voltage-dependent inactivation. These results suggest that inward currents through K+ channel proteins formed at least in part by KAT1 polypeptides are capable of inactivation, but the structural component facilitating inactivation is not present when channel complexes are formed by either KAT1 or KAB1 in the absence of additional subunits.  相似文献   

13.
Type 1 diabetes is an autoimmune disease with a strong inflammatory component. The cytokines interleukin-1β and interferon-γ contribute to beta cell apoptosis in type 1 diabetes. These cytokines induce endoplasmic reticulum stress and the unfolded protein response (UPR), contributing to the loss of beta cells. IRE1α, one of the UPR mediators, triggers insulin degradation and inflammation in beta cells and is critical for the transition from “physiological” to “pathological” UPR. The mechanisms regulating inositol-requiring protein 1α (IRE1α) activation and its signaling for beta cell “adaptation,” “stress response,” or “apoptosis” remain to be clarified. To address these questions, we combined mammalian protein-protein interaction trap-based IRE1α interactome and functional genomic analysis of human and rodent beta cells exposed to pro-inflammatory cytokines to identify novel cytokine-induced regulators of IRE1α. Based on this approach, we identified N-Myc interactor (NMI) as an IRE1α-interacting/modulator protein in rodent and human pancreatic beta cells. An increased expression of NMI was detected in islets from nonobese diabetic mice with insulitis and in rodent or human beta cells exposed in vitro to the pro-inflammatory cytokines interleukin-1β and interferon-γ. Detailed mechanistic studies demonstrated that NMI negatively modulates IRE1α-dependent activation of JNK and apoptosis in rodent and human pancreatic beta cells. In conclusion, by using a combined omics approach, we identified NMI induction as a novel negative feedback mechanism that decreases IRE1α-dependent activation of JNK and apoptosis in cytokine-exposed beta cells.  相似文献   

14.
The very large G protein-coupled receptor 1 (VLGR1) is a core component in inner ear hair cell development. Mutations in the vlgr1 gene cause Usher syndrome, the symptoms of which include congenital hearing loss and progressive retinitis pigmentosa. However, the mechanism of VLGR1-regulated intracellular signaling and its role in Usher syndrome remain elusive. Here, we show that VLGR1 is processed into two fragments after autocleavage at the G protein-coupled receptor proteolytic site. The cleaved VLGR1 β-subunit constitutively inhibited adenylate cyclase (AC) activity through Gαi coupling. Co-expression of the Gαiq chimera with the VLGR1 β-subunit changed its activity to the phospholipase C/nuclear factor of activated T cells signaling pathway, which demonstrates the Gαi protein coupling specificity of this subunit. An R6002A mutation in intracellular loop 2 of VLGR1 abolished Gαi coupling, but the pathogenic VLGR1 Y6236fsx1 mutant showed increased AC inhibition. Furthermore, overexpression of another Usher syndrome protein, PDZD7, decreased the AC inhibition of the VLGR1 β-subunit but showed no effect on the VLGR1 Y6236fsx1 mutant. Taken together, we identified an independent Gαi signaling pathway of the VLGR1 β-subunit and its regulatory mechanisms that may have a role in the development of Usher syndrome.  相似文献   

15.
Defensins are components of the innate immune system that promote the directional migration and activation of dendritic cells, thereby modulating the adaptive immune response. Because matrix glycosaminoglycan (GAG) is known to be important for these functions, we characterized the structural features of human β-defensin 6 (hBD6) and GAG interaction using a combination of structural and in silico analyses. Our results showed that GAG model compounds, a pentasaccharide (fondaparinux, FX) and an octasaccharide heparin derivative (dp8) bind to the α-helix and in the loops between the β2 and β3 strands, inducing the formation of a ternary complex with a 2:1 hBD6:FX stoichiometry. Competition experiments indicated an overlap of GAG and chemokine receptor CCR2 binding sites. An NMR-derived model of the ternary complex revealed that FX interacts with hBD6 along the dimerization interface, primarily contacting the α-helices and β2-β3 loops from each monomer. We further demonstrated that high-pressure NMR spectroscopy could capture an intermediate stage of hBD6-FX interaction, exhibiting features of a cooperative binding mechanism. Collectively, these data suggest a “sandwich-like” model in which two hBD6 molecules bind a single FX chain and provide novel structural insights into how defensin orchestrates leukocyte recruitment through GAG binding and G protein-coupled receptor activation. Despite the similarity to chemokines and hBD2, our data indicate different properties for the hBD6-GAG complex. This work adds significant information to the currently limited data available for the molecular structures and dynamics of defensin carbohydrate binding.  相似文献   

16.
The cytokines, interleukin-3 (IL-3), interleukin-5 (IL-5), and granulocyte-macrophage colony-stimulating factor (GM-CSF), exhibit overlapping activities in the regulation of hematopoietic cells. In humans, the common β (βc) receptor is shared by the three cytokines and functions together with cytokine-specific α subunits in signaling. A widely accepted hypothesis is that receptor activation requires heterodisulfide formation between the domain 1 D-E loop disulfide in human βc (hβc) and unidentified cysteine residues in the N-terminal domains of the α receptors. Since the development of this hypothesis, new data have been obtained showing that domain 1 of hβc is part of the cytokine binding epitope of this receptor and that an IL-3Rα isoform lacking the N-terminal Ig-like domain (the “SP2” isoform) is competent for signaling. We therefore investigated whether distortion of the domain 1-domain 4 ligand-binding epitope in hβc and the related mouse receptor, βIL-3, could account for the loss of receptor signaling when the domain 1 D-E loop disulfide is disrupted. Indeed, mutation of the disulfide in hβc led to both a complete loss of high affinity binding with the human IL-3Rα SP2 isoform and of downstream signaling. Mutation of the orthologous residues in the mouse IL-3-specific receptor, βIL-3, not only precluded direct binding of mouse IL-3 but also resulted in complete loss of high affinity binding and signaling with the mouse IL-3Rα SP2 isoform. Our data are most consistent with a role for the domain 1 D-E loop disulfide of hβc and βIL-3 in maintaining the precise positions of ligand-binding residues necessary for normal high affinity binding and signaling.  相似文献   

17.
Cystine knot α-amylase inhibitors are cysteine-rich, proline-rich peptides found in the Amaranthaceae and Apocynaceae plant species. They are characterized by a pseudocyclic backbone with two to four prolines and three disulfides arranged in a knotted motif. Similar to other knottins, cystine knot α-amylase inhibitors are highly resistant to degradation by heat and protease treatments. Thus far, only the α-amylase inhibition activity has been described for members of this family. Here, we show that cystine knot α-amylase inhibitors named alstotides discovered from the Alstonia scholaris plant of the Apocynaceae family display antiviral activity. The alstotides (As1–As4) were characterized by both proteomic and genomic methods. All four alsotides are novel, heat-stable and enzyme-stable and contain 30 residues. NMR determination of As1 and As4 structures reveals their conserved structural fold and the presence of one or more cis-proline bonds, characteristics shared by other cystine knot α-amylase inhibitors. Genomic analysis showed that they contain a three-domain precursor, an arrangement common to other knottins. We also showed that alstotides are antiviral and cell-permeable to inhibit the early phase of infectious bronchitis virus and Dengue infection, in addition to their ability to inhibit α-amylase. Taken together, our results expand membership of cystine knot α-amylase inhibitors in the Apocynaceae family and their bioactivity, functional promiscuity that could be exploited as leads in developing therapeutics.  相似文献   

18.
Scml2 is a member of the Polycomb group of proteins involved in epigenetic gene silencing. Human Scml2 is a part of a multisubunit protein complex, PRC1 (Polycomb repressive complex 1), which is responsible for maintenance of gene repression, prevention of chromatin remodeling, preservation of the “stemness” of the cell, and cell differentiation. Although the majority of PRC1 subunits have been recently characterized, the structure of Scml2 and its role in PRC1-mediated gene silencing remain unknown. In this work a conserved protein domain within human Scml2 has been identified, and its structure was determined by solution NMR spectroscopy. This module was named Scm-like embedded domain, or SLED. Evolutionarily, the SLED domain emerges in the first multicellular organisms, consistent with the role of Scml2 in cell differentiation. Furthermore, it is exclusively found within the Scm-like family of proteins, often accompanied by malignant brain tumor domain (MBT) and sterile α motif (SAM) domains. The domain adopts a novel α/β fold with no structural analogues found in the Protein Data Bank (PDB). The ability of the SLED to bind double-stranded DNA was also examined, and the isolated domain was shown to interact with DNA in a sequence-specific manner. Because PRC1 complexes localize to the promoters of a specific subset of developmental genes in vivo, the SLED domain of Scml2 may provide an important link connecting the PRC1 complexes to their target genes.  相似文献   

19.
20.
The fate of a memory, whether stored or forgotten, is determined by the ability of an active or tagged synapse to undergo changes in synaptic efficacy requiring protein synthesis of plasticity-related proteins. A synapse can be tagged, but without the “capture” of plasticity-related proteins, it will not undergo long lasting forms of plasticity (synaptic tagging and capture hypothesis). What the “tag” is and how plasticity-related proteins are captured at tagged synapses are unknown. Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is critical in learning and memory and is synthesized locally in neuronal dendrites. The mechanistic (mammalian) target of rapamycin (mTOR) is a protein kinase that increases CaMKIIα protein expression; however, the mechanism and site of dendritic expression are unknown. Herein, we show that mTOR activity mediates the branch-specific expression of CaMKIIα, favoring one secondary, daughter branch over the other in a single neuron. mTOR inhibition decreased the dendritic levels of CaMKIIα protein and mRNA by shortening its poly(A) tail. Overexpression of the RNA-stabilizing protein HuD increased CaMKIIα protein levels and preserved its selective expression in one daughter branch over the other when mTOR was inhibited. Unexpectedly, deleting the third RNA recognition motif of HuD, the domain that binds the poly(A) tail, eliminated the branch-specific expression of CaMKIIα when mTOR was active. These results provide a model for one molecular mechanism that may underlie the synaptic tagging and capture hypothesis where mTOR is the tag, preventing deadenylation of CaMKIIα mRNA, whereas HuD captures and promotes its expression in a branch-specific manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号