首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tendon-bone healing is important for the successful reconstruction of the anterior cruciate ligament by using the hamstring tendon. Mesenchymal stem cells (MSCs) have attracted much interest because of their self-renewing potential and multipotentiality for possible clinical use. We previously reported that MSCs derived from synovium had a higher proliferation and differentiation potential than the other MSCs that we examined. The purpose of this study was to investigate the effect and mechanism of the implantation of the synovial MSCs on tendon-bone healing in rats. Half of the Achilles’ tendon grafts of rats were inserted into a bone tunnel from the tibial plateau to the tibial tuberosity with a suture-post fixation. The bone tunnel was filled with MSCs labeled with fluorescent marker DiI or without MSCs as the control. The tendon-bone interface was analyzed histologically, and collagen fibers were quantified. At 1 week, the tendon-bone interface was filled with abundant DiI-positive cells, and the proportion of collagen fiber area was significantly higher in the MSC group than in the control group. By 2 weeks, the proportion of oblique collagen fibers, which appeared to be Sharpey’s fibers, was significantly higher in the MSC group than in the control group. At 4 weeks, the interface tissue disappeared, and the implanted tendon appeared to attach to the bone directly in both groups. DiI-labeled cells could no longer be observed. Implantation of synovial MSCs into bone tunnel thus accelerated early remodeling of tendon-bone healing, as shown histologically. This study was supported in part by grants from the Japan Society for the Promotion of Science (19591752) and from the Center of Excellence Program for Frontier Research on Molecular Destruction and Reconstruction of Tooth and Bone at Tokyo Medical and Dental University to T.M. and from the Japan Society for the Promotion of Science (18591657) to I.S.  相似文献   

2.
《Cytotherapy》2014,16(6):857-867
Background aimsSuture anchor fixation failure has been reported as a result of anchor loosening and migration during the tendon-bone repair. The aim of this study was to evaluate the effects of bone morphogenetic protein-2 (BMP-2) inserted into the suture anchor hole on bone formation and the tendon-bone healing.MethodsBoth back legs of 24 New Zealand White rabbits (n = 48) were used in this study. A metal suture anchor was then placed 5 mm below the cortex. In the control group, the space over the eyelet of the anchor (suture anchor hole) was not filled. In the experimental group, the suture anchor hole was filled with 0.1 mL of fibrin glue (group 2) or collagen gel (group 3) with 1 μg BMP-2. Histologic analysis, real-time-polymerase chain reaction, bone density and failure load measurement were performed, and differences were analyzed at 4 and 8 weeks.ResultsHistologic analysis revealed more abundant new bone, mature bone and organized fibrocartilage at the tendon-bone interface at 4 and 8 weeks in groups in which BMP-2 was applied. At 8 weeks, the failure load of groups 1, 2 and 3 was significantly different among the three groups (P = 0.01). After post hoc Tukey test, the failure load of group 2 was significantly higher than that of group 1 (P = 0.01).ConclusionsBMP-2, administrated as described in this study, improved tendon-bone healing and bone formation, resulting in improved biomechanical strength of the tendon-bone junction.  相似文献   

3.
IntroductionSuccessful graft ingrowth following reconstruction of the anterior cruciate ligament is governed by complex biological processes at the tendon-bone interface. The aim of this study was to investigate in an in vitro study the effects of bone morphogenetic protein 7 (BMP-7) on tendon-bone integration.ResultsIn both models, positive effects of BMP-7 on ALP enzyme activity were observed (p<0.001). Additionally, similar results were noted for LDH activity and lactate concentration. BMP-7 stimulation led to a significant increase in OCN expression. Whereas the effects of BMP-7 on tendon monoculture peaked during an early phase of the experiment (p<0.001), the cocultures showed a maximal increase during the later stages (p<0.001). The histological analysis showed a stimulating effect of BMP-7 on extracellular matrix formation. Organized ossification zones and calcium carbonate-like structures were only observed in the BMP-stimulated cell cultures.DiscussionThis study showed the positive effects of BMP-7 on the biological process of tendon-bone integration in vitro. Histological signs of improved mineralization were paralleled by increased rates of osteoblast-specific protein levels in primary bovine osteoblasts and fibroblasts.ConclusionOur findings indicated a role for BMP-7 as an adjuvant therapeutic agent in the treatment of ligamentous injuries, and they emphasized the importance of the transdifferentiation process of tendinous fibroblasts at the tendon-bone interface.  相似文献   

4.
Gamma radiation is established as a procedure for inactivating bacteria, fungal spores and viruses. Sterilization of soft tissue allografts with high dose 60Co gamma radiation has been shown to have adverse effects on allograft biomechanical properties. In the current study, bone-patellar tendon-bone (BPTB) allografts from 32 mature sheep were divided into two treatment groups: low-dose radiation at 15 kGy (n = 16) and high-dose radiation at 25 kGy (n = 16) with the contralateral limb serving as a 0 kGy (n = 32) non-irradiated control. Half of the tendons from all treatment groups were biomechanically tested to determine bulk BPTB mechanical properties, cancellous bone compressive properties, and interference screw pull-out strength. The remaining tissues were prepared, implanted, and mechanically tested in an acute in vitro anterior crucial ligament (ACL) reconstruction. Low-dose radiation did not adversely affect mechanical properties of the tendon allograft, bone, or ACL reconstruction compared to internal non-irradiated control. However, high-dose radiation compromised bulk tendon load at failure and ultimate strength by 26.9 and 28.9%, respectively (P < 0.05), but demonstrated no negative effect on the cancellous bone compressive properties or interference screw pull-out strength. Our findings suggest that low dose radiation (15 kGy) does not compromise the mechanical integrity of the allograft tissue, yet high dose radiation (25 kGy) significantly alters the biomechanical integrity of the soft tissue constituent.  相似文献   

5.

Background

Both tenotomy and tenodesis have been widely used for the treatment of long head of biceps tendon (LHBT) lesions, but the optimal strategy remains considerably controversial. In this meta-analysis of published studies, we compared the results of the two procedures.

Methods

A literature search that compared tenotomy with tenodesis was performed using MEDLINE, and Embase until August 2014. A total of 7 studies reporting data on 622 subjects were included. Study quality was evaluated using the PEDro critical appraisal tool and the NO quality assessment tool.

Results

Data synthesis showed higher functional outcomes, a lower complication rate, and longer surgical time in patients managed with tenodesis compared to tenotomy (Constant score, P = 0.02; Popeye sign, P < 0.001; cramp pain, P = 0.04; surgical time, P < 0.001, respectively).

Conclusion

This meta-analysis indicates that tenodesis results in better arm function and lower incidences of cramp pain and Popeye sign in LHBT lesions, while the procedure required longer surgical time compared to tenotomy. More sufficiently powered studies would be required to further determine the optimal strategy.  相似文献   

6.
This study sought to develop a computational framework that emulates the anterior cruciate ligament reconstruction surgery using transtibial portal technique. The proposed model included the tibia–femoral and patella–femoral joints, articular cartilage and menisci. Key surgical parameters were incorporated including bone-patellar-tendon-bone graft excision and pre-tensioning, tunnel morphology, bone plugs, and bone plug fixation. Several simulation steps were parameterized to reflect the clinically reported surgical procedure. Our focus was to explore the intra-operative effects of variations in tunnel directions on the selected metrics of joint mechanics during Lachman and Anterior Drawer tests. A mathematical construct capable of transforming the limited and heterogeneous experimental and surgical data to evidence-based validation was adopted to ensure the viability of the finite element models. We found that the proposed models, subject to a variation in tunnel directions, resulted in simulation outputs that favor the reported experimental data of Lachman and Anterior Drawer tests under uncertainty. Simulation results for a population of three-dimensional tunnel orientations provided insights into the graft–tunnel contact mechanics and the spatial stress distribution in the graft, insights that have been anecdotally observed in prior experimental studies. The intraarticular graft tension was found to be higher than the estimated in tunnel graft force, and larger differences were found for the least inclined tunnels exhibiting higher contact pressures, transverse bending and twisting of the graft and Von-Mises stress at the graft–femoral tunnel interface. Conversely, tunnels with high inclination angles exhibited higher intraarticular graft tension and Von-Mises stress at the graft–tibial bone plug interface.  相似文献   

7.
In 12 patients, the extensor carpi radialis longus muscle tendon unit was elongated using the radial half of the parent tendon so that it could reach the site of new insertion, the A1-A2 pulley of flexor sheath or lateral bands, after routing the transfer through the carpal tunnel. The tendon was of appropriate thickness and could be split into two halves to be used as a graft. Further splitting of the tendon into four tails was possible. The transferred slips retained adequate strength to activate the fingers after the operation. It is suggested that splitting of the extensor carpi radialis longus tendon to use one half as a tendon graft be considered in patients in whom extensor carpi radialis longus transfer is planned to correct finger clawing. This technique is simple, needs minor modification in the sequence of operative steps, reduces operating time, and saves the patient from postoperative discomfort, muscle herniation, and scarring at the donor site (usually the thigh).  相似文献   

8.
We constructed a new artificial collagen-based graft as a tendon proper and covered it with a polydioxanone sheath. This bioimplant was tested in vitro and also its effectiveness was tested in a large tendon defect model in vivo. A 2-cm full defect in the left Achilles tendon of all animals (n?=?120) was created. The animals were andomly divided into three groups: control (n?=?40), treated with collagen-based graft (n?=?40) and treated with collagen-Polydioxanone-based graft (n?=?40). Clinical examination was done weekly. The animals were euthanized at 60 and 120 days post-injury (DPI). The serum level of platelet-derived growth factor (PDGF) was measured. Hydroxyproline and dry matter content together with gross morphologic, histomorphometric, ultrastructural and biomechanical characteristics of the healing tissues were studied. The mechanism of host–graft interactions was studied in another 55 pilot animals. The graft was able to initiate inflammation, accelerate fibroplasia and improve remodeling of the neotenon in the defect area. Except for small remnants, most parts of the implants were gradually absorbed and substituted by a newly regenerated tendon. The preserved remnants were accepted as a part of neotenon and acted as scaffolds for the newly regenerated collagen fibrils. Unlike the controls, the treated lesions showed lower peritendinous adhesion, muscle fibrosis and atrophy and higher hydroxyproline concentration, dry matter content, ultimate strength, yield strength and modulus of elasticity. Numbers, diameter, density and differentiation of collagen fibrils were also greater in the treated lesions than the control ones. This study showed that the implant was cytocompatible, biodegradable, biocompatible and effective in tendon healing.  相似文献   

9.
Minimising post-operative donor site morbidity is an important consideration when selecting a graft for surgical reconstruction of the torn anterior cruciate ligament (ACL). One of the most common procedures, the bone-patellar tendon-bone (BPTB) graft involves removal of the central third from the tendon. However, it is unknown whether the mechanical properties of the donor site (patellar tendon) recover. The present study investigated the mechanical properties of the human patellar tendon in 12 males (mean±S.D. age: 37±14 years) who had undergone surgical reconstruction of the ACL using a BPTB graft between 1 and 10 years before the study (operated knee; OP). The uninjured contralateral knee served as a control (CTRL). Patellar tendon mechanical properties were assessed in vivo combining dynamometry with ultrasound imaging. Patellar tendon stiffness was calculated from the gradient of the tendon's force–elongation curve. Tendon stiffness was normalised to the tendon's dimensions to obtain the tendon's Young's modulus. Cross-sectional area (CSA) of OP patellar tendons was larger by 21% than CTRL tendons (P<0.01). Patellar tendon stiffness was not significantly different between OP and CTRL tendons, but the Young's modulus was lower by 24% in OP tendons (P<0.01). A compensatory enlargement of the patellar tendon CSA, presumably due to scar tissue formation, enabled a recovery of tendon stiffness in the OP tendons. The newly formed tendon tissue had inferior properties as indicated by the reduced tendon Young's modulus, but it increased to a level that enabled recovery of tendon stiffness.  相似文献   

10.
The mechanical effects of varying the depth of cement penetration in the cement–bone interface were investigated using finite element analysis (FEA) and validated using companion experimental data. Two FEA models of the cement–bone interface were created from micro-computed tomography data and the penetration of cement into the bone was varied over six levels each. The FEA models, consisting of the interdigitated cement–bone constructs with friction between cement and bone, were loaded to failure in tension and in shear. The cement and bone elements had provision for crack formation due to excessive stress. The interfacial strength showed a strong relationship with the average interdigitation (r2=0.97 and r2=0.93 in tension and shear, respectively). Also, the interface strength was strongly related with the contact area (r2=0.98 and r2=0.95 in tension and shear, respectively). The FEA results compared favorably to the stiffness–strength relationships determined experimentally. Overall, the cement–bone interface was 2.5 times stronger in shear than in tension and 1.15 times stiffer in tension than in shear, independent of the average interdigitation. More cracks occurred in the cement than in the bone, independent of the average interdigitation, consistent with the experimental results. In addition, more cracks were generated in shear than in tension. In conclusion, achieving and maintaining maximal infiltration of cement into the bone to obtain large interdigitation and contact area is key to optimizing the interfacial strength.  相似文献   

11.
Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2.  相似文献   

12.
Tendon-bone insertion injuries such as rotator cuff and anterior cruciate ligament injuries are currently highly common and severe. The key method of treating this kind of injury is the reconstruction operation. The success of this reconstructive process depends on the ability of the graft to incorporate into the bone. Recently, there has been substantial discussion about how to enhance the integration of tendon and bone through biological methods. Stem cells like bone marrow mesenchymal stem cells (MSCs), tendon stem/progenitor cells, synovium-derived MSCs, adipose-derived stem cells, or periosteum-derived periosteal stem cells can self-regenerate and potentially differentiate into different cell types, which have been widely used in tissue repair and regeneration. Thus, we concentrate in this review on the current circumstances of tendon-bone healing using stem cell therapy.  相似文献   

13.
The determining factors for the fixation of uncemented screws in bone are the bone-implant interface and the peri-implant bone. The goal of this work was to explore the role of the peri-implant bone architecture on the mechanics of the bone-implant system. In particular, the specific aims of the study were to investigate: (i) the impact of the different architectural parameters, (ii) the effects of disorder, and (iii) the deformations in the peri-implant region. A three-dimensional beam lattice model to describe trabecular bone was developed. Various microstructural features of the lattice were varied in a systematic way. Implant pull-out tests were simulated, and the stiffness and strength of the bone-implant system were computed. The results indicated that the strongest decrease in pull-out strength was obtained by trabecular thinning, whereas pull-out stiffness was mostly affected by trabecular removal. These findings could be explained by investigating the peri-implant deformation field. For small implant displacements, a large amount of trabeculae in the peri-implant region were involved in the load transfer from implant to bone. Therefore, trabecular removal in this region had a strong negative effect on pull-out stiffness. Conversely, at higher displacements, deformations mainly localized in the trabeculae in contact with the implant; hence, thinning those trabeculae produced the strongest decrease in the strength of the system. Although idealized, the current approach is helpful for a mechanical understanding of the role played by peri-implant bone.  相似文献   

14.
The bacterial aerobic respiratory chain has a terminal oxidase of the heme-copper oxidase superfamily, comprised of cytochrome c oxidase (COX) and ubiquinol oxidase (UOX); UOX evolved from COX. Acetobacter pasteurianus, an α-Proteobacterial acetic acid bacterium (AAB), produces UOX but not COX, although it has a partial COX gene cluster, ctaBD and ctaA, in addition to the UOX operon cyaBACD. We expressed ctaB and ctaA genes of A. pasteurianus in Escherichia coli and demonstrated their function as heme O and heme A synthases. We also found that the absence of ctaD function is likely due to accumulated mutations. These COX genes are closely related to other α-Proteobacterial COX proteins. However, the UOX operons of AAB are closely related to those of the β/γ-Proteobacteria (γ-type UOX), distinct from the α/β-Proteobacterial proteins (α-type UOX), but different from the other γ-type UOX proteins by the absence of the cyoE heme O synthase. Thus, we suggest that A. pasteurianus has a functional γ-type UOX but has lost the COX genes, with the exception of ctaB and ctaA, which supply the heme O and A moieties for UOX. Our results suggest that, in AAB, COX was replaced by β/γ-Proteobacterial UOX via horizontal gene transfer, while the COX genes, except for the heme O/A synthase genes, were lost.  相似文献   

15.
Reattachment and healing of tendon to bone poses a persistent clinical challenge and often results in poor outcomes, in part because the mechanisms that imbue the uninjured tendon-to-bone attachment with toughness are not known. One feature of typical tendon-to-bone surgical repairs is direct attachment of tendon to smooth bone. The native tendon-to-bone attachment, however, presents a rough mineralized interface that might serve an important role in stress transfer between tendon and bone. In this study, we examined the effects of interfacial roughness and interdigital stochasticity on the strength and toughness of a bimaterial interface. Closed form linear approximations of the amplification of stresses at the rough interface were derived and applied in a two-dimensional unit-cell model. Results demonstrated that roughness may serve to increase the toughness of the tendon-to-bone insertion site at the expense of its strength. Results further suggested that the natural tendon-to-bone attachment presents roughness for which the gain in toughness outweighs the loss in strength. More generally, our results suggest a pathway for stochasticity to improve surgical reattachment strategies and structural engineering attachments.  相似文献   

16.
17.
18.
Articular surface congruency and graft stability are considered essential factors in the success of osteochondral grafting; however, quantitative measures of short-term load bearing capacity of grafts implanted by the mosaicplasty technique have not been reported. The purpose of this study was to develop a live tissue in vitro model to examine short-term fixation strength of mosaicplasty autografts immediately after and 1 week following graft implantation. Cylindrical osteochondral autografts were implanted in vitro by the mosaicplasty technique on five pairs of porcine femoral condyles within one and a half hours of animal sacrifice. Immediately following the surgical procedure, graft push-in and pull-out strength tests as well as indentation tests to determine modulus of the surrounding cancellous bone were performed on half of the specimens from the distal femurs of each animal. The remaining specimens, matched for location in the contralateral leg, were incubated in culture medium for 7 days prior to performing the same set of mechanical tests. Averaged push-in and pull-out graft fixation strength decreased 44% from 135.7 to 75.5N over the 7-day period, while no change in modulus was detected in the surrounding cancellous bone. These in vitro results demonstrate a substantial deterioration of short-term fixation strength of mosaicplasty grafts from the immediate post-operative state. Such a reduction in short-term graft load bearing capacity may pose a threat to the surgically established articular surface congruency and blood vessels formed during the early stages of the healing response.  相似文献   

19.
Prostaglandins, well-known lipid mediators in vertebrate animals, have also shown to play certain regulatory roles in insects and other arthropods acting on reproduction, immune system and ion transport. However, knowledge of their biosynthetic pathways in arthropods is lacking. In the present study, we report the cloning and expression of cyclooxygenase (COX) from amphipod crustaceans Gammarus spp and Caprella spp. The amphipod COX proteins contain key residues shown to be important for cyclooxygenase and peroxidase activities. Differently from all other known cyclooxygenases the N-terminal signal sequence of amphipod enzymes is not cleaved during protein expression in mammalian cells. The C-terminus of amphipod COX is shorter than that of mammalian isoforms and lacks the KDEL(STEL)-type endoplasmic reticulum retention/retrieval signal. Despite that, amphipod COX proteins are N-glycosylated and locate similarly to the vertebrate COX on the endoplasmic reticulum and nuclear envelope. Both amphipod COX mRNAs encode functional cyclooxygenases that catalyze the transformation of arachidonic acid into prostaglandins. Using bioinformatic analysis we identified a COX-like gene from the human body louse Pediculus humanus corporis genome that encodes a protein with about 30% sequence identity with human COX-1 and COX-2. Although the COX gene is known to be absent from genomes of Drosophila sp., Aedes aegypti, Bombyx mori, and other insects, our studies establish the existence of the COX gene in certain lineages within the insect world.  相似文献   

20.

Background

The mismatch of the elastic modulus between implants and bone tissue can lead to stress shielding, bone resorption and poor osseointegration. Compared with normal bone tissue, this problem is much more serious in osteoporosis. The purpose of this study was designed to find out whether the novel Ti-24Nb-4Zr-7.9Sn (TNZS) implant with low elastic modulus and high strength was suitable for biomedical material, especially in osteoporosis.

Methodology

In vitro study, the viability and Alkaline phosphatase (ALP) activity of osteoblasts on the TNZS and Ti-6V-4V (TAV) were observed. In vivo study, 30 adult female New Zealand rabbits were selected and divided randomly into two groups: sham-operation (SHAM, n = 6) and ovariectomised in combination with methylprednisolone treatment (OVX+MP, n = 24). Two implants were then placed in the tibia of each OVX + MP group rabbit, one in each side (left: TAV; right: TNZS). The OVX + MP group rabbits were sacrificed at 4 and 12 weeks after the implantation. The osteoporotic bone responses to the TNZS and TAV implants were evaluated by pull-out test, Micro-CT analyses and histological observation.

Principal Findings

Compared with the TAV group, the TNZS group showed a significant increase (P<0.05) in cell viability and ALP activity, new bone formation and pull-out force.

Conclusions

The novel TNZS implants show good biological performance both in vitro and in vivo, which suggests that the alloys are suitable for biomedical applications, especially in osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号