首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Bellingshausen Sea constitutes the third largest sea in the Southern Ocean, though it is widely recognized as one of the less-studied Antarctic areas. To reduce this lack of knowledge, a survey to study the biodiversity of its marine benthic communities was carried out during the Bentart 2003 and Bentart 2006 Spanish Antarctic expeditions. The study of the hydroid collection has provided 27 species, belonging to ten families and 15 genera. Twenty-one out of the 27 species constitute new records for the Bellingshausen Sea, raising the total number of known species to 37, as also do nine out of the 15 genera. Candelabrum penola, Lafoea annulata, and Staurotheca juncea are recorded for the second time. Most species belong to Leptothecata. Sertulariidae with 13 species (48%) is by far the most speciose family, and Symplectoscyphus with seven species (26%), including S. bellingshauseni sp. nov. and S. hesperides sp. nov., the most diverse genus. Considering the whole benthic hydroid fauna of the Bellingshausen Sea, 18 species (69%) are endemic to Antarctic waters, either with a circum-Antarctic (12 species, 46%) or West Antarctic (6 species, 23%) distribution, 23 (88%) are restricted to Antarctic or Antarctic/sub-Antarctic waters, and only three species have a wider distribution. Bellingshausen Sea hydroid fauna is composed of a relatively high diversity of typical representatives of the Antarctic benthic hydroid fauna, though with a surprisingly low representation of some of the most diverse and widespread Antarctic genera (Oswaldella and Schizotricha), what could be related to the fact that its shelf-inhabiting hydroid fauna remains practically unknown.  相似文献   

2.
Although scientific knowledge about the biodiversity of Antarctic benthic hydrozoans has considerably increased in recent years, little is known about their spatial distribution and underpinning factors. Trying to contribute to filling this gap, benthic hydroid spatial distribution in the Bellingshausen Sea (Southern Ocean) was studied. Samples were collected at 32 stations at depths between 86 and 3,304 m during Spanish Antarctic expeditions in 2003 and 2006. Sediments and bottom water properties were analyzed using an USNEL-type box corer and a Neil Brown Instrument System Mark III CTD, respectively. Forty species were reported (Acryptolaria sp., Stegopoma plicatile, Staurotheca dichotoma having the highest percentages of occurrence), representing ca. 19 % of the species richness of the known benthic hydroid fauna of the Southern Ocean. Three well-defined assemblages (shallow, deep and transitional) were established based on significant differences in species occurrence. Benthic hydroid spatial distribution in the Bellingshausen Sea seems to be controlled mainly by depth and substrate (most hydrozoan species are epibiotic), by species dispersal abilities and by species resilience to changing hydrodynamic conditions. The level of species richness found in the present study, compared with other Antarctic areas, gives support to arguments stated by authors against the idea that the Bellingshausen Sea is “a benthos desert” controlled by oligotrophic conditions and intense iceberg traffic.  相似文献   

3.
Sponges play a key role in Antarctic marine benthic community structure and dynamics and are often a dominant component of many Southern Ocean benthic communities. Understanding the drivers of sponge distribution in Antarctica enables us to understand many of general benthic biodiversity patterns in the region. The sponges of the Antarctic and neighbouring oceanographic regions were assessed for species richness and biogeographic patterns using over 8,800 distribution records. Species-rich regions include the Antarctic Peninsula, South Shetland Islands, South Georgia, Eastern Weddell Sea, Kerguelen Plateau, Falkland Islands and north New Zealand. Sampling intensity varied greatly within the study area, with sampling hotspots found at the Antarctic Peninsula, South Georgia, north New Zealand and Tierra del Fuego, with limited sampling in the Bellingshausen and Amundsen seas in the Southern Ocean. In contrast to previous studies we found that eurybathy and circumpolar distributions are important but not dominant characteristics in Antarctic sponges. Overall Antarctic sponge species endemism is ~43%, with a higher level for the class Hexactinellida (68%). Endemism levels are lower than previous estimates, but still indicate the importance of the Polar Front in isolating the Southern Ocean fauna. Nineteen distinct sponge distribution patterns were found, ranging from regional endemics to cosmopolitan species. A single, distinct Antarctic demosponge fauna is found to encompass all areas within the Polar Front, and the sub-Antarctic regions of the Kerguelen Plateau and Macquarie Island. Biogeographical analyses indicate stronger faunal links between Antarctica and South America, with little evidence of links between Antarctica and South Africa, Southern Australia or New Zealand. We conclude that the biogeographic and species distribution patterns observed are largely driven by the Antarctic Circumpolar Current and the timing of past continent connectivity.  相似文献   

4.
This database includes spatial data of Antarctic, Sub-Antarctic and cold temperate echinoid distribution (Echinodermata: Echinoidea) collected during many oceanographic campaigns led in the Southern Hemisphere from 1872 to 2010. The dataset lists occurrence data of echinoid distribution south of 35°S latitude, together with information on taxonomy (from species to genus level), sampling sources (cruise ID, sampling dates, ship names) and sampling sites (geographic coordinates and depth). Echinoid occurrence data were compiled from the Antarctic Echinoid Database (David et al. 2005a), which integrates records from oceanographic cruises led in the Southern Ocean until 2003. This database has been upgraded to take into account data from oceanographic cruises led after 2003. The dataset now reaches a total of 6160 occurrence data that have been checked for systematics reliability and consistency. It constitutes today the most complete database on Antarctic and Sub-Antarctic echinoids.  相似文献   

5.
Twenty-three species of benthic hydroids, belonging to eight families and 13 genera, were found in a hydroid collection from Peter I Island, collected during both the Bentart 2003 and Bentart 2006 Spanish expeditions with BIO Hespérides in 2003 and 2006. Fourteen out of the 23 species constitute new records for Peter I Island, raising the total number of known species in the area to 30, as also do seven out of the 13 genera. The majority of the species are members of the subclass Leptothecata; the subclass Anthoathecata being scarcely represented. Sertulariidae is the family with the greatest number of species in the collection, with eight species (35%), followed by Lafoeidae with five (22%). Symplectoscyphus with four species (17%) and both Antarctoscyphus and Halecium with three (13%), including H. frigidum sp. nov., were the most diverse genera. Twenty species (ca. 77%) are endemic to Antarctic waters, either with a circum-Antarctic (11 species, ca. 42%) or West Antarctic (9 species, ca. 35%) distribution. Twenty-four (ca. 92%) are restricted to Antarctic or Antarctic/sub-Antarctic waters; only two species have a wider distribution. Peter I Island hydroid fauna is composed of typical representatives of the Antarctic benthic hydroid fauna, though it is characterized by the low representation of some of the most diverse and widespread Antarctic genera (Schizotricha and Staurotheca).  相似文献   

6.
Throughout the Quaternary, the continental-based Antarctic ice sheets expanded and contracted repeatedly. Evidence suggests that during glacial maxima, grounded ice eliminated most benthic (bottom-dwelling) fauna across the Antarctic continental shelf. However, paleontological and molecular evidence indicates most extant Antarctica benthic taxa have persisted in situ throughout the Quaternary. Where and how the Antarctic benthic fauna survived throughout repeated glacial maxima remain mostly hypothesised. If understood, this would provide valuable insights into the ecology and evolution of Southern Ocean biota over geological timescales. Here we synthesised and appraised recent studies and presented an approach to demonstrate how genetic data can be effective in identifying where and how Antarctic benthic fauna survived glacial periods. We first examined the geological and ecological evidence for how glacial periods influenced past species demography in order to provide testable frameworks for future studies. We outlined past ice-free areas from Antarctic ice sheet reconstructions that could serve as glacial refugia and discussed how benthic fauna with pelagic or non-pelagic dispersal strategies moved into and out of glacial refugia. We also reviewed current molecular studies and collated proposed locations of Southern Ocean glacial refugia on the continental shelf around Antarctica, in the deep sea, and around sub-Antarctic islands. Interestingly, the proposed glacial refugia based on molecular data generally do not correspond to the ice-free areas identified by Antarctic ice sheet reconstructions. The potential biases in sampling and in the choice of molecular markers in current literature are discussed, along with the future directions for employing testable frameworks and genomic methods in Southern Ocean molecular studies. Continued data syntheses will elucidate greater understanding of where and how Southern Ocean benthic fauna persisted throughout glacial periods and provide insights into their resilience against climate changes in the future.  相似文献   

7.
The Bellingshausen Sea is one of the most remote and least surveyed seas of the Southern Ocean, so that little was known about benthic communities and those factors that determine community structuring until recently. The present work aims at characterizing the structure and spatial distribution of echinoid assemblages in the Bellingshausen Sea, as well as identifying the environmental factors that determine assemblage structuring. Echinoids were collected at 32 stations using an Agassiz trawl, at depths of 86–3,304?m, during BENTART oceanographic expeditions led in 2003 and 2006. Sediment and bottom water properties were analysed using an USNEL-type box corer and a Neil Brown Instrument System Mark III CTD, respectively. Echinoids were found at all stations, except Peter I Island. Seventeen species were identified, representing 22?% of the echinoid species present in the Southern Ocean and increasing twofold the number of species recorded in the Bellingshausen Sea so far. The echinoid fauna is dominated by the very abundant species Sterechinus antarcticus. Depth is the key factor that determines the nature of echinoid assemblages, which are mainly divided into the continental shelf, the slope and the deep-sea basin. In addition, sediment properties, namely redox values, organic matter and mud content, best match species dispersion on the shelf. Sediment properties affect echinoid distribution depending on species food range and feeding strategy. As it might be expected, sediment properties more strongly influence specialist feeders (Schizasteridae and Cidaridae) than generalists (Echinidae).  相似文献   

8.
Genetic homogeneity of krill (Euphausia superba Dana) in the Southern Ocean   总被引:2,自引:1,他引:1  
Summary Development of a comprehensive picture of the genetic population structure of the Antarctic krill (Euphausia superba) has been hampered by a lack of genetic data from two major areas of the species' distribution, the Bellingshausen Sea and the Ross Sea. Evidence from earlier studies of a discrete Bellingshausen Sea population was based on anomalous allele frequencies in two sample sets that were collected near the west coast of the Antarctic Peninsula rather than in the Bellingshausen Sea proper. In this paper we describe the first biochemical genetic data obtained on krill from the central Bellingshausen Sea and from the Ross Sea. Analyses of eight polymorphic loci in samples from these two areas have failed to provide any evidence of population structuring within the Pacific sector of the Southern Ocean, and have indicated that Pacific sector krill cannot be genetically discriminated from Atlantic sector krill or Indian Ocean sector krill. These findings further support the hypothesis of a single circumpolar breeding population of Antarctic krill.  相似文献   

9.

Aim

We studied molecular eukaryotic biodiversity patterns in shallow hard-bottom Antarctic benthic communities using community DNA metabarcoding. Polar ecosystems are extremely exposed to climate change, and benthic macroinvertebrate communities have demonstrated rapid response to a range of natural and anthropogenic pressures. However, these rich and diverse ecosystems are poorly studied, revealing how little is known about the biodiversity of the Antarctic benthos associated with hard-bottom habitats.

Location

West Antarctic Peninsula and South Shetland Islands.

Methods

Using data collected in seven localities along the western Antarctic Peninsula, we calculated spatial patterns of alpha and beta diversities. Furthermore, we analysed temporal changes in benthic composition in one location (Deception Island) over 3 years. We calculated the temporal alpha and beta diversities to reveal changes in this community over time.

Results

We obtained a final list of 2057 molecular operational taxonomic units. We found significant differences in benthic community composition between localities and among years. Our dataset revealed a total of 10 different kingdom-level lineages and 34 different phyla in the samples. The most diverse phylum was Arthropoda, followed by Bacillariophyta, and Annelida, while the highest relative read abundances belonged to Annelida, Porifera and Echinodermata. Benthic community compositions changed between 2016 and 2018 in Deception Island, and decreasing species richness was the main component of temporal beta diversity.

Main Conclusions

Direct sampling methods are required for monitoring these complex communities. Informative biodiversity patterns can be retrieved even though most of the benthic biodiversity found in Antarctic habitats is yet to be taxonomically described and barcoded. Hard-bottom assemblages exhibit high spatial variability and heterogeneity, not related to depth, which represent a huge challenge for large-scale studies in the Southern Ocean. Local patchiness and structure within these communities are probably a consequence of a combination of several biotic and abiotic factors (i.e. ice disturbance, food supply and competition).  相似文献   

10.
11.
Information regarding the echinoids in this dataset is based on the Agassiz Trawl (AGT) and epibenthic sledge (EBS) samples collected during the British Antarctic Survey cruise JR275 on the RRS James Clark Ross in the austral summer 2012. A total of 56 (1 at the South Orkneys and 55 in the Eastern Weddell Sea) Agassiz Trawl and 18 (2 at the South Orkneys and 16 in the Eastern Weddell Sea) epibenthic sledge deployments were performed at depths ranging from ~280 to ~2060 m. This presents a unique collection for the Antarctic benthic biodiversity assessment of an important group of benthic invertebrates. In total 487 specimens belonging to six families, 15 genera, and 22 morphospecies were collected. The species richness per station varied between one and six. Total species richness represents 27% of the 82 echinoid species ever recorded in the Southern Ocean (David et al. 2005b, Pierrat et al. 2012, Saucède et al. 2014). The Cidaridae (sub-family Ctenocidarinae) and Schizasteridae are the two most speciose families in the dataset. They comprise seven and nine species respectively. This is illustrative of the overall pattern of echinoid diversity in the Southern Ocean where 65% of Antarctic species belong to the families Schizasteridae and Cidaridae (Pierrat et al. 2012).  相似文献   

12.
The Scotia Arc is the only shallow-water and island bridge linking nowadays Patagonia and the Antarctic. The Antarctic Circumpolar Current as an oceanographic peculiarity makes this region an interesting biogeographic transition zone, because this frontal system traditionally is said to isolate the Antarctic fauna from that of the adjacent northern ecosystems. Based on benthos samples from three expeditions onboard R/V Polarstern, we studied distribution patterns of 200 polychaete species and 34 major benthic taxa in order to evaluate the role of polychaetes in the benthic realm of this part of the Southern Ocean. ANOSIM test distinguished three station groups: the central eastern Scotia Sea, the continental shelf off South America and stations at the tip of the Antarctic Peninsula. These station groups differed in organism densities and diversities with stations at the tip of the Antarctic Peninsula hosting the most diverse and dense community. The polychaete diversity patterns in the three assemblages evidenced closer connectivity between the tip of the Antarctic Peninsula and the central eastern Scotia Sea than between the continental shelf off South America with either the stations off the tip of the Peninsula or the central eastern Scotia Sea. This is probably supported by the Polar Front, which divides the island chain into two branches. Species distribution and community patterns of polychaetes appear to be associated with oceanographic and sediment conditions in this region. Most of the shared species showed the capability to tolerate differences in hydrostatic pressure. We suggest that the islands of the Scotia Sea may constitute a bridge for exchange of benthic species, particularly for polychaetes with eurybathic distribution and high dispersal capabilities.  相似文献   

13.
The bivalve Lissarca notorcadensis is one of the most abundant species in Antarctic waters and has colonised the entire Antarctic shelf and Scotia Sea Islands. Its brooding reproduction, low dispersal capabilities and epizoic lifestyle predict limited gene flow between geographically isolated populations. Relationships between specimens from seven regions in the Southern Ocean and outgroups were assessed with nuclear 28S rDNA and mitochondrial cytochrome oxidase subunit I (COI) genes. The 28S dataset indicate that while Lissarca appears to be a monophyletic genus, there is polyphyly between the Limopsidae and Philobryidae. Thirteen CO1 haplotypes were found, mostly unique to the sample regions, and two distinct lineages were distinguished. Specimens from the Weddell and Ross Sea form one lineage while individuals from the banks and islands of the Scotia Sea form the other. Within each lineage, further vicariance was observed forming six regionally isolated groups. Our results provide initial evidence for reproductively isolated populations of L. notorcadensis. The islands of the Scotia Sea appear to act as centres of speciation in the Southern Ocean.  相似文献   

14.
The basin off the Bellingshausen Sea, in contrast to other better known areas such as the Antarctic Peninsula and the Ross and Weddell Seas, has been little investigated due to remoteness and the prevalence of ice for most of the year. The present study focuses on an analysis of polychaetes collected from soft bottoms of this sea and off the west coast of the Antarctic Peninsula (Gerlache Strait) by means of a box-corer (25 × 25 cm) in two intensive surveys carried out during austral summers of 2002–2003 and 2005–2006 (BENTART-03 and BENTART-06). Three different polychaete assemblages were determined from the classification and ordination analyses of sampling stations based on the Bray-Curtis similarity index. One group of stations encompassed the deep stations from the shelf of the Bellingshausen Sea, the second one the shallower stations from the same area and the third one those stations located near the coast of Peter I Island and Gerlache Strait, off the Antarctic Peninsula. The environmental variables involved in segregating these groups were several sedimentary features (redox potential, gravel content) and depth. The present study provides further support to previous ones that considered the shelf of the Bellingshausen Sea as a differentiated region within the Southern Ocean, clearly distinct to the adjacent Weddell and Scott Seas and the Antarctic Peninsula.  相似文献   

15.
A new petalophthalmid mysid, Hansenomysis anaramosae n. sp., is described from specimens sampled with a suprabenthic sled in the Bellingshausen Sea (Southern Ocean). Hansenomysis anaramosae is clearly distinguishable from its closest congener, H. angusticauda Tattersall, by the carapace sculpturing, the rostrum produced into a spine-like process, the shape and armature of the antennal scale, eyeplate, and telson. This new species is the fourth Hansenomysis species described from the Southern Ocean. A key to these Antarctic species is presented.  相似文献   

16.
The remote and hostile Southern Ocean is home to a diverse and rich community of life that thrives in an environment dominated by glaciations and strong currents. Marine biological studies in the region date back to the nineteenth century, but despite this long history of research, relatively little is known about the complex interactions between the highly seasonal physical environment and the species that inhabit the Southern Ocean. Oceanographically, the Southern Ocean is a major driver of global ocean circulation and plays a vital role in interacting with the deep water circulation in each of the Pacific, Atlantic, and Indian oceans. The Census of Antarctic Marine Life and the Scientific Committee on Antarctic Research Marine Biodiversity Information Network (SCAR-MarBIN) have strived to coordinate and unify the available scientific expertise and biodiversity data to improve our understanding of Southern Ocean biodiversity. Taxonomic lists for all marine species have been compiled to form the Register of Antarctic Marine Species, which currently includes over 8,200 species. SCAR-MarBIN has brought together over 1 million distribution records for Southern Ocean species, forming a baseline against which future change can be judged. The sample locations and numbers of known species from different regions were mapped and the depth distributions of benthic samples plotted. Our knowledge of the biodiversity of the Southern Ocean is largely determined by the relative inaccessibility of the region. Benthic sampling is largely restricted to the shelf; little is known about the fauna of the deep sea. The location of scientific bases heavily influences the distribution pattern of sample and observation data, and the logistical supply routes are the focus of much of the at-sea and pelagic work. Taxa such as mollusks and echinoderms are well represented within existing datasets with high numbers of georeferenced records. Other taxa, including the species-rich nematodes, are represented by just a handful of digital records.  相似文献   

17.
Danis B  Jangoux M  Wilmes J 《ZooKeys》2012,(185):73-78
This dataset includes information on sea stars collected during the ANDEEP3 expedition, which took place in 2005. The expedition focused on deep-sea stations in the Powell Basin and Weddell Sea.Sea stars were collected using an Agassiz trawl (3m, mesh-size 500µm), deployed in 16 stations during the ANTXXII/3 (ANDEEP3, PS72) expedition of the RV Polarstern. Sampling depth ranged from 1047 to 4931m. Trawling distance ranged from 731 to 3841m. The sampling area ranges from -41°S to -71°S (latitude) and from 0 to -65°W (longitude). A complete list of stations is available from the PANGAEA data system (http://www.pangaea.de/PHP/CruiseReports.php?b=Polarstern), including a cruise report (http://epic-reports.awi.de/3694/1/PE_72.pdf).The dataset includes 50 records, with individual counts ranging from 1-10, reaching a total of 132 specimens.The andeep3-Asteroidea is a unique dataset as it covers an under-explored region of the Southern Ocean, and that very little information was available regarding Antarctic deep-sea starfish. Before this study, most of the information available focused on starfish from shallower depths than 1000m. This dataset allowed to make unique observations, such as the fact that some species were only present at very high depths (Hymenaster crucifer, Hymenaster pellucidus, Hymenaster praecoquis, Psilaster charcoti, Freyella attenuata, Freyastera tuberculata, Styrachaster chuni and Vemaster sudatlanticus were all found below -3770m), while others displayed remarkable eurybathy, with very high depths amplitudes (Bathybiaster loripes (4842m), Lysasterias adeliae (4832m), Lophaster stellans (4752m), Cheiraster planeta (4708m), Eremicaster crassus (4626m), Lophaster gaini (4560m) and Ctenodiscus australis (4489m)).Even if the number of records is relatively small, the data bring many new insights on the taxonomic, bathymetric and geographic distributions of Southern starfish, covering a very large sampling zone. The dataset also brings to light six species, newly reported in the Southern Ocean.The quality of the data was controlled very thoroughly, by means of on-board Polarstern GPS systems, checking of identification by a renowned specialist (Prof. Michel Jangoux, Université Libre de Bruxelles), and matching to the Register of Antarctic Marine Species (RAMS) and World Register of Marine Species (WoRMS). The data is therefore fit for completing checklists, for inclusion in biodiversity patterns analysis, or niche modeling. It also nicely fills an information gap regarding deep-sea starfish from the Southern Ocean, for which data is very scarce at this time. The authors may be contacted if any additional information is needed before carrying out detailed biodiversity or biogeographic studies.  相似文献   

18.
Antarctic microbial diversity: the basis of polar ecosystem processes   总被引:3,自引:0,他引:3  
Microorganisms are fundamental to the functioning of Antarctic ecosystems. Although microbial biomass can be immense in Southern Ocean blooms and freshwater cyanobacterial mats, species richness is generally more restricted than it is in temperate regions. However, there are representatives of a broad variety of taxa providing a diverse gene pool. Species diversity may be low while metabolic flexibility is high so that a few strains can provide most necessary functions. In this context, biodiversity is the sum of biological potential. This Special Issue highlights aspects of microbial ecology that can be studied only in Antarctica or which are defined most clearly in Antarctic habitats. Relatively simple microbial communities, or conspicuous species within them, can be used as indicators of microbial processes and responses to environmental change. These include the palaeological record of benthic diatoms and response of soil cyanobacterial communities to regional warming and UV-B stress. The climatic conditions and relict babitats of the Antarctic dry valleys are a valuable analogue for detecting microbial life and diversity on Mars. The global microbial biodiversity initiative Diversitas and international Antarctic networks such as BIOTAS (Biological Investigations of Terrestrial Antarctic Systems) harness taxonomic and ecophysiological expertize to understand better these unique polar ecosystems.  相似文献   

19.
The Register of Antarctic Marine Species (RAMS) is a marine species database that manages an authoritative taxonomic list of species occurring in the Southern Ocean. RAMS links with several other initiatives managing biogeographic or genomics information. The current paper aims to briefly present RAMS and provides an updated snapshot of its contents, in the form of a DarwinCore checklist (available through http://ipt.biodiversity.aq/resource.do?r=rams) and illustrative barplots. Moreover, this article presents a ten year appraisal (since the creation of RAMS). This appraisal first focuses on RAMS bibliometrics. We observed that RAMS was cited (Google Scholar) in 50 distinct publications among which 32 were peer-reviewed in 18 different journals. Three journals (Antarctic Science, Polar Biology, ZooKeys) represent almost 40% of these peer-review publications. The second appraisal focuses on the evolution of new RAMS records. We observed an important decrease in data additions since 2011. As a case study, we focused on an original dataset for a specific group (Asteroidea, Echinodermata). It appears that around one hundred species of asteroids are lacking in RAMS despite the relatively high availability of these data. This suggests that the users’ community (or collaborative projects such as AquaRES) could be helpful in order to maintain the RAMS database over the long term.  相似文献   

20.
Although frequent studies have been made on the benthos assemblages living in the Southern Ocean, few studies have dealt with molluscan assemblages and ecology. During the research programmes BENTART carried out in austral summers of 2003 and 2006 in a study area including Low Island, West Antarctic Peninsula, Bellingshausen Sea and Peter I Island, 45 stations were sampled using quantitative box-corer, Agassiz trawl, epibenthic sledge and rock dredge, at depths of 53–3,304 m. These data were used to search and analyse the malacological assemblages. A total of 2,889 living specimens of molluscs belonging to 139 species of shelled Gastropoda, Bivalvia and Scaphopoda were recoded. Gastropods were the best-represented in species richness, but the bivalves accounted the major abundance and Cyamiocardium denticulatum (460 individuals) was the most abundant species. Species richness varied from 1 to 37 species and diversity showed great variations at different stations. Four groups of stations of low similarities and some differences in faunistic composition were observed: one that gathers the Antarctic Peninsula and Peter I Island, one that also includes the Low Island, and two composed by stations of Bellingshausen Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号