首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
PDZ domains are well known protein-protein interaction modules that, as part of multidomain proteins, assemble molecular complexes. Some PDZ domains have been reported to interact with membrane lipids, in particular phosphatidylinositol phosphates, but few studies have been aimed at elucidating the prevalence or the molecular details of such interactions. We screened 46 Drosophila PDZ domains for phosphoinositide-dependent cellular localization and discovered that the second PDZ domain of polychaetoid (Pyd PDZ2) interacts with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the plasma membrane. Surface plasmon resonance binding experiments with recombinant protein established that Pyd PDZ2 interacts with phosphatidylinositol phosphates with apparent affinities in the micromolar range. Electrostatic interactions involving an extended positively charged surface of Pyd PDZ2 are crucial for the PtdIns(4,5)P(2)-dependent membrane interactions as shown by a combination of three-dimensional modeling, mutagenesis, binding, and localization studies. In vivo localization studies further suggested that both lipid and peptide binding contribute to membrane localization. We identified the transmembrane protein Crumbs as a Pyd PDZ2 ligand and probed the relation between peptide and PtdIns(4,5)P(2) binding. Contrary to the prevalent view on PDZ/peptide/lipid binding, we did not find competition between peptide and lipid ligands. Instead, preloading the protein with the 10-mer Crb3 peptide increased the apparent affinity of Pyd PDZ2 for PtdIns(4,5)P(2) 6-fold. Our results suggest that membrane localization of Pyd PDZ2 may be driven by a combination of peptide and PtdIns(4,5)P(2) binding, which raises the intriguing possibility that the domain may coordinate protein- and phospholipid-mediated signals.  相似文献   

2.
Membrane repair is mediated by multiprotein complexes, such as that formed between the dimeric EF-hand protein S100A10, the calcium- and phospholipid-binding protein annexin A2, the enlargeosome protein AHNAK, and members of the transmembrane ferlin family. Although interactions between these proteins have been shown, little is known about their structural arrangement and mechanisms of formation. In this work, we used a non-covalent complex between S100A10 and the N terminus of annexin A2 (residues 1-15) and a designed hybrid protein (A10A2), where S100A10 is linked in tandem to the N-terminal region of annexin A2, to explore the binding region, stoichiometry, and affinity with a synthetic peptide from the C terminus of AHNAK. Using multiple biophysical methods, we identified a novel asymmetric arrangement between a single AHNAK peptide and the A10A2 dimer. The AHNAK peptide was shown to require the annexin A2 N terminus, indicating that the AHNAK binding site comprises regions on both S100A10 and annexin proteins. NMR spectroscopy was used to show that the AHNAK binding surface comprised residues from helix IV in S100A10 and the C-terminal portion from the annexin A2 peptide. This novel surface maps to the exposed side of helices IV and IV' of the S100 dimeric structure, a region not identified in any previous S100 target protein structures. The results provide the first structural details of the ternary S100A10 protein complex required for membrane repair.  相似文献   

3.
Cyclic GMP-dependent protein kinase (PKG) is a key mediator of the nitric oxide/cGMP signaling pathway and plays a central role in regulating cardiovascular and neuronal functions. The N-terminal ∼50 amino acids of the kinase are required for homodimerization and association with isoform-specific PKG-anchoring proteins (GKAPs), which target the kinase to specific substrates. To understand the molecular details of PKG dimerization and gain insight into its association with GKAPs, we solved a crystal structure of the PKG Iβ dimerization/docking domain. Our structure provides molecular details of this unique leucine/isoleucine zipper, revealing specific hydrophobic and ionic interactions that mediate dimerization and demonstrating the topology of the GKAP interaction surface.  相似文献   

4.
Eukaryotic organelles have developed elaborate protein quality control systems to ensure their normal activity, among which Deg/HtrA proteases play an essential role. Plant Deg2 protease is a homologue of prokaryotic DegQ/DegP proteases and is located in the chloroplast stroma, where its proteolytic activity is required to maintain the efficiency of photosynthetic machinery during stress. Here, we demonstrate that Deg2 exhibits dual protease-chaperone activities, and we present the hexameric structure of Deg2 complexed with co-purified peptides. The structure shows that Deg2 contains a unique second PDZ domain (PDZ2) following a conventional PDZ domain (PDZ1), with PDZ2 orchestrating the cage assembly of Deg2. We discovered a conserved internal ligand for PDZ2 that mediates hexamer formation and thus locks the protease in the resting state. These findings provide insight into the diverse modes of PDZ domain-mediated regulation of Deg proteases.  相似文献   

5.
The stacking of Golgi cisternae involves GRASP65 and GRASP55. The oligomerization of the N-terminal GRASP domain of these proteins, which consists of two tandem PDZ domains, is required to tether the Golgi membranes. However, the molecular basis for GRASP assembly is unclear. Here, we determined the crystal structures of the GRASP domain of GRASP65 and GRASP55. The structures reveal similar homotypic interactions: the GRASP domain forms a dimer in which the peptide-binding pockets of the two neighboring PDZ2 domains face each other, and the dimers are further connected by the C-terminal tail of one GRASP domain inserting into the binding pocket of the PDZ1 domain in another dimer. Biochemical analysis suggests that both types of contacts are relatively weak but are needed in combination for GRASP-mediated Golgi stacking. Our results unveil a novel mode of membrane tethering by GRASP proteins and provide insight into the mechanism of Golgi stacking.  相似文献   

6.
Membrane-associated guanylate kinases (MAGUKs) are a large family of scaffold proteins that play essential roles in tethering membrane receptors, adhesion molecules, and macromolecular signaling complexes for tissue developments, cell-cell communications, and intracellular signal transductions. The defining feature of the MAGUK family scaffolds is that each member contains a conserved core consisting of a PSD-95/Dlg/ZO-1 (PDZ) domain, an Src homology 3 (SH3) domain, and a catalytically inactive guanylate kinase (GuK) domain arranged in tandem, although the structural features and functional implications of the PDZ-SH3-GuK tandem arrangement are unclear. The structure of the ZO-1 PDZ3-SH3-GuK tandem solved in this study reveals that the PDZ domain directly interacts with the SH3-GuK module, forming a structural supramodule with distinct target binding properties with respect to the isolated domains. Structure-based sequence analysis suggests that the PDZ-SH3-GuK tandems of other members of the MAGUK family also form supramodules.  相似文献   

7.
The E6 protein of human papillomavirus (HPV) exhibits complex interaction patterns with several host proteins, and their roles in HPV-mediated oncogenesis have proved challenging to study. Here we use several biophysical techniques to explore the binding of E6 to the three PDZ domains of the tumor suppressor protein synapse-associated protein 97 (SAP97). All of the potential binding sites in SAP97 bind E6 with micromolar affinity. The dissociation rate constants govern the different affinities of HPV16 and HPV18 E6 for SAP97. Unexpectedly, binding is not mutually exclusive, and all three PDZ domains can simultaneously bind E6. Intriguingly, this quaternary complex has the same apparent hydrodynamic volume as the unliganded PDZ region, suggesting that a conformational change occurs in the PDZ region upon binding, a conclusion supported by kinetic experiments. Using NMR, we discovered a new mode of interaction between E6 and PDZ: a subset of residues distal to the canonical binding pocket in the PDZ(2) domain exhibited noncanonical interactions with the E6 protein. This is consistent with a larger proportion of the protein surface defining binding specificity, as compared with that reported previously.  相似文献   

8.
The mammalian Na+/H+ exchange regulatory factor 1 (NHERF1) is a multidomain scaffolding protein essential for regulating the intracellular trafficking and macromolecular assembly of transmembrane ion channels and receptors. NHERF1 consists of tandem PDZ-1, PDZ-2 domains that interact with the cytoplasmic domains of membrane proteins and a C-terminal (CT) domain that binds the membrane-cytoskeleton linker protein ezrin. NHERF1 is held in an autoinhibited state through intramolecular interactions between PDZ2 and the CT domain that also includes a C-terminal PDZ-binding motif (-SNL). We have determined the structures of the isolated and tandem PDZ2CT domains by high resolution NMR using small angle x-ray scattering as constraints. The PDZ2CT structure shows weak intramolecular interactions between the largely disordered CT domain and the PDZ ligand binding site. The structure reveals a novel helix-turn-helix subdomain that is allosterically coupled to the putative PDZ2 domain by a network of hydrophobic interactions. This helical subdomain increases both the stability and the binding affinity of the extended PDZ structure. Using NMR and small angle neutron scattering for joint structure refinement, we demonstrate the release of intramolecular domain-domain interactions in PDZ2CT upon binding to ezrin. Based on the structural information, we show that human disease-causing mutations in PDZ2, R153Q and E225K, have significantly reduced protein stability. Loss of NHERF1 expressed in cells could result in failure to assemble membrane complexes that are important for normal physiological functions.  相似文献   

9.
The Shank/proline-rich synapse-associated protein family of multidomain proteins is known to play an important role in the organization of synaptic multiprotein complexes. For instance, the Shank PDZ domain binds to the C termini of guanylate kinase-associated proteins, which in turn interact with the guanylate kinase domain of postsynaptic density-95 scaffolding proteins. Here we describe the crystal structures of Shank1 PDZ in its peptide free form and in complex with the C-terminal hexapeptide (EAQTRL) of guanylate kinase-associated protein (GKAP1a) determined at 1.8- and 2.25-A resolutions, respectively. The structure shows the typical class I PDZ interaction of PDZ-peptide complex with the consensus sequence -X-(Thr/Ser)-X-Leu. In addition, Asp-634 within the Shank1 PDZ domain recognizes the positively charged Arg at -1 position and hydrogen bonds, and salt bridges between Arg-607 and the side chains of the ligand at -3 and -5 positions contribute further to the recognition of the peptide ligand. Remarkably, whether free or complexed, Shank1 PDZ domains form dimers with a conserved beta B/beta C loop and N-terminal beta A strands, suggesting a novel model of PDZ-PDZ homodimerization. This implies that antiparallel dimerization through the N-terminal beta A strands could be a common configuration among PDZ dimers. Within the dimeric structure, the two-peptide binding sites are arranged so that the N termini of the bound peptide ligands are in close proximity and oriented toward the 2-fold axis of the dimer. This configuration may provide a means of facilitating dimeric organization of PDZ-target assemblies.  相似文献   

10.
Human papillomavirus (HPV) E6 oncoprotein targets certain tumor suppressors such as MAGI-1 and SAP97/hDlg for degradation. A short peptide at the C terminus of E6 interacts specifically with the PDZ domains of these tumor suppressors, which is a property unique to high-risk HPVs that are associated with cervical cancer. The detailed recognition mechanisms between HPV E6 and PDZ proteins are unclear. To understand the specific binding of cellular PDZ substrates by HPV E6, we have solved the crystal structures of the complexes containing a peptide from HPV18 E6 bound to three PDZ domains from MAGI-1 and SAP97/Dlg. The complex crystal structures reveal novel features of PDZ peptide recognition that explain why high-risk HPV E6 can specifically target these cellular tumor suppressors for destruction. Moreover, a new peptide-binding loop on these PDZs is identified as interacting with the E6 peptide. Furthermore, we have identified an arginine residue, unique to high-risk HPV E6 but outside the canonical core PDZ recognition motif, that plays an important role in the binding of the PDZs of both MAGI-I and SAP97/Dlg, the mutation of which abolishes E6's ability to degrade the two proteins. Finally, we have identified a dimer form of MAGI-1 PDZ domain 1 in the cocrystal structure with E6 peptide, which may have functional relevance for MAGI-1 activity. In addition to its novel insights into the biochemistry of PDZ interactions, this study is important for understanding HPV-induced oncogenesis; this could provide a basis for developing antiviral and anticancer compounds.  相似文献   

11.
AF-6 is a key molecule essential for structure organization of cell-cell junction of polarized epithelia. It belongs to a novel cell-cell adhesion system. The AF-6 PDZ domain mediates interactions by binding to a specific amino acid sequence in target proteins. Here we report the solution structure of the AF-6 PDZ domain determined by NMR. Previously, the AF-6 PDZ domain was considered to be a class II PDZ domain. However we found that a unique hydrophilic amino acid, Gln70, at position alphaB1 makes the alphaB/betaB groove of the AF-6 PDZ domain significantly different from that of the canonical class II PDZ domain. The AF-6 PDZ domain does not have the second hydrophobic binding pocket, and the N-terminal end of alphaB is closer to betaB. Using BIACORE and NMR chemical shift perturbation experiments, we have studied the binding characteristics of the PDZ domain to the C-terminal peptide of Neurexin, KKNKDKEYYV, and that of Bcr, KRQSILFSTEV. The C-terminal peptide of Neurexin is a class II ligand, whereas that of Bcr is a class I ligand. The dissociation constants of these ligands were 4.08 x 10(-7) and 2.23 x 10(-6) m, respectively. Each of the four C-terminal positions in Neurexin and Bcr may contribute to the interaction. The three-dimensional models of the AF-6 PDZ-Neurexin C-terminal peptide complex and the AF-6 PDZ-Bcr C-terminal peptide complex were built up by molecular dynamics simulations. Unlike the canonical class II PDZ domain, Ala74 at alphaB5 rather than the residue at alphaB1 makes direct hydrophobic contact with the side chain of Tyr at the -2 position of the ligand.  相似文献   

12.
PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended β-strand conformation by interacting in an antiparallel fashion with a PDZ β-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family.  相似文献   

13.
U2AF homology motifs (UHMs) mediate protein-protein interactions with U2AF ligand motifs (ULMs) of pre-mRNA splicing factors. The UHM-containing alternative splicing factor CAPERα regulates splicing of tumor-promoting VEGF isoforms, yet the molecular target of the CAPERα UHM is unknown. Here we present structures of the CAPERα UHM bound to a representative SF3b155 ULM at 1.7 Å resolution and, for comparison, in the absence of ligand at 2.2 Å resolution. The prototypical UHM/ULM interactions authenticate CAPERα as a bona fide member of the UHM family of proteins. We identify SF3b155 as the relevant ULM-containing partner of full-length CAPERα in human cell extracts. Isothermal titration calorimetry comparisons of the purified CAPERα UHM binding known ULM-containing proteins demonstrate that high affinity interactions depend on the presence of an intact, intrinsically unstructured SF3b155 domain containing seven ULM-like motifs. The interplay among bound CAPERα molecules gives rise to the appearance of two high affinity sites in the SF3b155 ULM-containing domain. In conjunction with the previously identified, UHM/ULM-mediated complexes of U2AF65 and SPF45 with SF3b155, this work demonstrates the capacity of SF3b155 to offer a platform for coordinated recruitment of UHM-containing splicing factors.  相似文献   

14.
PDZ domains are modular protein units that play important roles in organizing signal transduction complexes. PDZ domains mediate interactions with both C-terminal peptide ligands and other PDZ domains. Here, we used PDZ domains from neuronal nitric oxide synthase (nNOS) and postsynaptic density protein-95 (PSD-95) to explore the mechanism for PDZ-dimer formation. The nNOS PDZ domain terminates with a approximately 30 residue amino acid beta-finger peptide that is shown to be required for nNOS/PSD-95 PDZ dimer formation. In addition, formation of the PDZ dimer requires this beta-finger peptide to be physically anchored to the main body of the canonical nNOS PDZ domain. A buried salt bridge between the beta-finger and the PDZ domain induces and stabilizes the beta-hairpin structure of the nNOS PDZ domain. In apo-nNOS, the beta-finger peptide is partially flexible and adopts a transient beta-strand like structure that is stabilized upon PDZ dimer formation. The flexibility of the NOS PDZ beta-finger is likely to play a critical role in supporting the formation of nNOS/PSD-95 complex. The experimental data also suggest that nNOS PDZ and the second PDZ domain of PSD-95 form a "head-to-tail" dimer similar to the nNOS/syntrophin complex characterized by X-ray crystallography.  相似文献   

15.
The PDZ domain is an interaction motif that recognizes and binds the C-terminal peptides of target proteins. PDZ domains are ubiquitous in nature and help assemble multiprotein complexes that control cellular organization and signaling cascades. We present an optimized energy function to predict the binding free energy (ΔΔG) of PDZ domain/peptide interactions computationally. Geometry-optimized models of PDZ domain/peptide interfaces were built using Rosetta, and protein and peptide side chain and backbone degrees of freedom are minimized simultaneously. Using leave-one-out cross-validation, Rosetta’s energy function is adjusted to reproduce experimentally determined ΔΔG values with a correlation coefficient of 0.66 and a standard deviation of 0.79 kcal mol−1. The energy function places an increased weight on hydrogen bonding interactions when compared to a previously developed method to analyze protein/protein interactions. Binding free enthalpies (ΔΔH) and entropies (ΔS) are predicted with reduced accuracies of R = 0.60 and R = 0.17, respectively. The computational method improves prediction of PDZ domain specificity from sequence and allows design of novel PDZ domain/peptide interactions.  相似文献   

16.
Protein domains usually fold without or with only transiently populated intermediates, possibly to avoid misfolding, which could result in amyloidogenic disease. Whether observed intermediates are productive and obligatory species on the folding reaction pathway or dispensable by-products is a matter of debate. Here, we solved the crystal structure of a small protein domain, SAP97 PDZ2 I342W C378A, and determined its folding pathway. The presence of a folding intermediate was demonstrated both by single and double-mixing kinetic experiments using urea-induced (un)folding as well as ligand-induced folding. This protein domain was found to fold via a triangular scheme, where the folding intermediate could be either on- or off-pathway, depending on the experimental conditions. Furthermore, we found that the intermediate was present at equilibrium, which is rarely seen in folding reactions of small protein domains. The folding mechanism observed here illustrates the roughness and plasticity of the protein folding energy landscape, where several routes may be employed to reach the native state. The results also reconcile the folding mechanisms of topological variants within the PDZ domain family.  相似文献   

17.
Energetic determinants of internal motif recognition by PDZ domains   总被引:5,自引:0,他引:5  
Harris BZ  Hillier BJ  Lim WA 《Biochemistry》2001,40(20):5921-5930
PDZ domains are protein-protein interaction modules that organize intracellular signaling complexes. Most PDZ domains recognize specific peptide motifs followed by a required COOH-terminus. However, several PDZ domains have been found which recognize specific internal peptide motifs. The best characterized example is the syntrophin PDZ domain which, in addition to binding peptide ligands with the consensus sequence -E-S/T-X-V-COOH, also binds the neuronal nitric oxide synthase (nNOS) PDZ domain in a manner that does not depend on its precise COOH-terminal sequence. In the structure of the syntrophin-nNOS PDZ heterodimer complex, the two PDZ domains interact in a head-to-tail fashion, with an internal sequence from the nNOS PDZ domain binding precisely at the peptide binding groove of the syntrophin PDZ domain. To understand the energetic basis of this alternative mode of PDZ recognition, we have undertaken an extensive mutagenic and biophysical analysis of the nNOS PDZ domain and its interaction with the syntrophin PDZ domain. Our data indicate that the presentation of the nNOS internal motif within the context of a rigid beta-hairpin conformation is absolutely essential to binding; amino acids crucial to the structural integrity of the hairpin are as important or more important than residues that make direct contacts. The results reveal the general rules of PDZ recognition of diverse ligand types.  相似文献   

18.
Domain swapping within PDZ2 is responsible for dimerization of ZO proteins   总被引:1,自引:0,他引:1  
ZO-1 is a multidomain protein involved in cell-cell junctions and contains three PDZ domains, which are necessary for its function in vivo. PDZ domains play a central role in assembling diverse protein complexes through their ability to recognize short peptide motifs on other proteins. We determined the structure of the second of the three PDZ domains of ZO-1, which is known to promote dimerization as well as bind to C-terminal sequences on connexins. The dimer is stabilized by extensive symmetrical domain swapping of beta-strands, which is unlike any other known mechanism of PDZ dimerization. The canonical peptide-binding groove remains intact in both subunits of the PDZ2 dimer and is created by elements contributed from both monomers. This unique structure reveals an additional example of how PDZ domains dimerize and has multiple implications for both peptide binding and oligomerization in vivo.  相似文献   

19.
Nan Li  Tingjun Hou  Bo Ding  Wei Wang 《Proteins》2013,81(9):1676-1676
PDZ domain is one of the abundant modular domains that recognize short peptide sequences to mediate protein–protein interactions. To decipher the binding specificity of PDZ domain, we analyzed the interactions between 11 mouse PDZ domains and 217 peptides using a method called MIECSVM, which energetically characterizes the domain‐peptide interaction using molecular interaction energy components (MIECs) and predicts binding specificity using support vector machine (SVM). Cross‐validation and leave‐one‐domain‐out test showed that the MIEC‐SVM using all 44 PDZ‐peptide residue pairs at the interaction interface outperformed the sequence‐based methods in the literature. A further feature (residue pair) selection procedure illustrated that 16 residue pairs were uninformative to the binding specificity, even though they contributed significantly (~50%) to the binding energy. If only using the 28 informative residue pairs, the performance of the MIEC‐SVM on predicting the PDZ binding specificity was significantly improved. This analysis suggests that the informative and uninformative residue interactions between the PDZ domain and the peptide may represent those contributing to binding specificity and affinity, respectively. We performed additional structural and energetic analyses to shed light on understanding how the PDZ‐peptide recognition is established. The success of the MIEC‐SVM method on PDZ domains in this study and SH3 domains in our previous studies illustrates its generality on characterizing protein‐ peptide interactions and understanding protein recognition from a structural and energetic viewpoint.  相似文献   

20.
The PDZ domains of the protein tyrosine phosphatase PTP-BL mediate interactions by binding to specific amino acid sequences in target proteins. The solution structure of the second PDZ domain of PTP-BL, PDZ2, displays a compact fold with six β strands and two α-helices. A unique feature of this domain compared to the canonical PDZ fold is an extended flexible loop at the base of the binding pocket, termed L1, that folds back onto the protein backbone, a feature that is shared by both the murine and human orthologues. The structure of PDZ2 differs significantly from the orthologous human structure. A comparison of structural quality indicators clearly demonstrates that the PDZ2 ensemble is statistically more reasonable than that of the human orthologue. The analysis of 15N relaxation data for PDZ2 shows a normal pattern, with more rigid secondary structures and more flexible loop structures. Close to the binding pocket, Leu85 and Thr88 display greater mobility when compared to surrounding residues. Peptide binding studies demonstrated a lack of interaction between murine PDZ2 and the C terminus of the murine Fas/CD95 receptor, suggesting that the Fas/CD95 receptor is not an in vivo target for PDZ2. In addition, PDZ2 specifically binds the C termini of both human Fas/CD95 receptor and the RIL protein, despite RIL containing a non-canonical PDZ-interacting sequence of E-x-V. A model of PDZ2 with the RIL peptide reveals that the PDZ2 binding pocket is able to accommodate the bulkier side-chain of glutamic acid while maintaining crucial protein to peptide hydrogen bond interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号