首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous study has confirmed that hsa_circ_0092276 is highly expressed in doxorubicin (DOX)-resistant breast cancer cells, indicating that hsa_circ_0092276 may be involved in regulating the chemotherapy resistance of breast cancer. Here we attempted to investigate the biological role of hsa_circ_0092276 in breast cancer. We first constructed DOX-resistant breast cancer cells (MCF-7/DOX and MDA-MB-468/DOX). The 50% inhibiting concentration of MCF-7/DOX and MDA-MB-468/DOX cells was significantly higher than that of their parental breast cancer cells, MCF-7 and MDA-MB-46. MCF-7/DOX and MDA-MB-468/DOX cells also exhibited an up-regulation of drug resistance-related protein MDR1. Compared with MCF-7 and MDA-MB-46 cells, hsa_circ_0092276 was highly expressed in MCF-7/DOX and MDA-MB-468/DOX cells. Hsa_circ_0092276 overexpression enhanced proliferation and the expression of LC3-II/LC3-I and Beclin-1, and repressed apoptosis of breast cancer cells. The effect of hsa_circ_0092276 up-regulation on breast cancer cells was abolished by 3-methyladenine (autophagy inhibitor). Hsa_circ_0092276 modulated autophagy-related gene 7 (ATG7) expression via sponging miR-384. Hsa_circ_0092276 up-regulation promoted autophagy and proliferation, and repressed apoptosis of breast cancer cells, which was abolished by miR-384 overexpression or ATG7 knockdown. In addition, LV-circ_0092276 transfected MCF-7 cell transplantation promoted autophagy and tumor growth of breast cancer in mice. In conclusion, our data demonstrate that hsa_circ_0092276 promotes autophagy and DOX resistance in breast cancer by regulating miR-348/ATG7 axis. Thus, this article highlights a novel competing endogenous RNA circuitry involved in DOX resistance in breast cancer.  相似文献   

2.
《Phytomedicine》2014,21(12):1658-1665
Polygonatum odoratum lectin (POL), a mannose-binding GNA-related lectin, has been reported to display remarkable anti-proliferative and apoptosis-inducing activities toward a variety of cancer cells; however, the precise molecular mechanisms by which POL induces cancer cell death are still elusive. In the current study, we found that POL could induce both apoptosis and autophagy in human MCF-7 breast cancer cells. Subsequently, we found that POL induced MCF-7 cell apoptosis via the mitochondrial pathway. Additionally, we also found that POL induces MCF-7 cell apoptosis via EGFR-mediated Ras-Raf-MEK-ERK pathway, suggesting that POL may be a potential EGFR inhibitor. Finally, we used proteomics analyses for exploring more possible POL-induced pathways with EGFR, Ras, Raf, MEK and ERK, some of which were consistent with our in silico network prediction. Taken together, these results demonstrate that POL induces MCF-7 cell apoptosis and autophagy via targeting EGFR-mediated Ras-Raf-MEK-ERK signaling pathway, which would provide a new clue for exploiting POL as a potential anti-neoplastic drug for future cancer therapy.  相似文献   

3.
Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs and radiation is clearly important as these are common treatment approaches. Signaling cascades often involved in chemo-, hormonal- and radiation resistance are the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways. In the following studies we have examined the effects of activation of the Ras/PI3K/PTEN/Akt/mTOR cascade in the response of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs and radiation. Activation of Akt by introduction of conditionally-activated Akt-1 gene could result in resistance to chemotherapeutic and hormonal based drugs as well as radiation. We have determined that chemotherapeutic drugs such as doxorubicin or the hormone based drug tamoxifen, both used to treat breast cancer, resulted in the activation of the Raf/MEK/ERK pathway which is often associated with a pro-proliferative, anti-apoptotic response. In drug sensitive MCF-7 cells which have wild-type p53; ERK, p53 and downstream p21Cip-1 were induced upon exposure to doxorubicin. In contrast, in the drug resistant cells which expressed activated Akt-1, much lower levels of p53 and p21Cip1 were induced upon exposure to doxorubicin. These results indicate the involvement of the Ras/PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK and p53 pathways in the response to chemotherapeutic and hormonal based drugs. Understanding how breast cancers respond to chemo- and hormonal-based therapies and radiation may enhance the ability to treat breast cancer more effectively.  相似文献   

4.
Elucidating the response of breast cancer cells to chemotherapeutic and hormonal based drugs and radiation is clearly important as these are common treatment approaches. Signaling cascades often involved in chemo-, hormonal- and radiation resistance are the Ras/PI3K/PTE N/Akt/mTO R, Ras/Raf/MEK/ERK and p53 pathways. In the following studies we have examined the effects of activation of the Ras/PI3K/PTE N/Akt/mTO R cascade in the response of MCF-7 breast cancer cells to chemotherapeutic- and hormonal-based drugs and radiation. Activation of Akt by introduction of conditionally-activated Akt-1 gene could result in resistance to chemotherapeutic and hormonal based drugs as well as radiation. We have determined that chemotherapeutic drugs such as doxorubicin or the hormone based drug tamoxifen, both used to treat breast cancer, resulted in the activation of the Raf/MEK/ERK pathway which is often associated with a proproliferative, anti-apoptotic response. In drug sensitive MCF-7 cells which have wild-type p53; ERK, p53 and downstream p21Cip-1 were induced upon exposure to doxorubicin. In contrast, in the drug resistant cells which expressed activated Akt-1, much lower levels of p53 and p21Cip1 were induced upon exposure to doxorubicin. These results indicate the involvement of the Ras/PI3K/PTE N/Akt/mTO R, Ras/Raf/MEK/ERK and p53 pathways in the response to chemotherapeutic and hormonal based drugs. Understanding how breast cancers respond to chemo- and hormonal-based therapies and radiation may enhance the ability to treat breast cancer more effectively.Key words: Akt, ERK, mTOR, chemotherapeutic drugs, radiation  相似文献   

5.
Wang X  Li N  Liu B  Sun H  Chen T  Li H  Qiu J  Zhang L  Wan T  Cao X 《The Journal of biological chemistry》2004,279(44):45855-45864
The phosphatidylethanolamine (PE)-binding proteins (PEBPs) are an evolutionarily conserved family of proteins with pivotal biological functions. Here we describe the cloning and functional characterization of a novel family member, human phosphatidylethanolamine-binding protein 4 (hPEBP4). hPEBP4 is expressed in most human tissues and highly expressed in tumor cells. Its expression in tumor cells is further enhanced upon tumor necrosis factor (TNF) alpha treatment, whereas hPEBP4 normally co-localizes with lysosomes, TNFalpha stimulation triggers its transfer to the cell membrane, where it binds to Raf-1 and MEK1. L929 cells overexpressing hPEBP4 are resistant to both TNFalpha-induced ERK1/2, MEK1, and JNK activation and TNFalpha-mediated apoptosis. Co-precipitation and in vitro protein binding assay demonstrated that hPEBP4 interacts with Raf-1 and MEK1. A truncated form of hPEBP4, lacking the PE-binding domain, maintains lysosomal co-localization but has no effect on cellular responses to TNFalpha. Given that MCF-7 breast cancer cells expressed hPEBP4 at a high level, small interfering RNA was used to silence the expression of hPEBP4. We demonstrated that down-regulation of hPEBP4 expression sensitizes MCF-7 breast cancer cells to TNFalpha-induced apoptosis. hPEBP4 appears to promote cellular resistance to TNF-induced apoptosis by inhibiting activation of the Raf-1/MEK/ERK pathway, JNK, and PE externalization, and the conserved region of PE-binding domain appears to play a vital role in this biological activity of hPEBP4.  相似文献   

6.
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors.  相似文献   

7.
Chen YJ  Kuo CD  Chen SH  Chen WJ  Huang WC  Chao KS  Liao HF 《PloS one》2012,7(5):e37006
Multi-drug resistance (MDR), an unfavorable factor compromising treatment efficacy of anticancer drugs, involves upregulated ATP binding cassette (ABC) transporters and activated Sonic hedgehog (Shh) signaling. By preparing human breast cancer MCF-7 cells resistant to doxorubicin (DOX), we examined the effect and mechanism of norcantharidin (NCTD), a small-molecule synthetic compound, on reversing multidrug resistance. The DOX-prepared MCF-7R cells also possessed resistance to vinorelbine, characteristic of MDR. At suboptimal concentration, NCTD significantly inhibited the viability of DOX-sensitive (MCF-7S) and DOX-resistant (MCF-7R) cells and reversed the resistance to DOX and vinorelbine. NCTD increased the intracellular accumulation of DOX in MCF-7R cells and suppressed the upregulated the mdr-1 mRNA, P-gp and BCRP protein expression, but not the MRP-1. The role of P-gp was strengthened by partial reversal of the DOX and vinorelbine resistance by cyclosporine A. NCTD treatment suppressed the upregulation of Shh expression and nuclear translocation of Gli-1, a hallmark of Shh signaling activation in the resistant clone. Furthermore, the Shh ligand upregulated the expression of P-gp and attenuated the growth inhibitory effect of NCTD. The knockdown of mdr-1 mRNA had not altered the expression of Shh and Smoothened in both MCF-7S and MCF-7R cells. This indicates that the role of Shh signaling in MDR might be upstream to mdr-1/P-gp, and similar effect was shown in breast cancer MDA-MB-231 and BT-474 cells. This study demonstrated that NCTD may overcome multidrug resistance through inhibiting Shh signaling and expression of its downstream mdr-1/P-gp expression in human breast cancer cells.  相似文献   

8.
The Ras/Raf/MEK/ERK and PI3K/PTEN/AKT signaling cascades play critical roles in the transmission of signals from growth factor receptors to regulate gene expression and prevent apoptosis. Components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf, PI3K, PTEN, Akt). Also, mutations occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. These pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of elevated activated Akt levels to phosphorylate and inactivate Raf-1. We have investigated the genetic structures and functional roles of these two signaling pathways in the malignant transformation and drug resistance of hematopoietic, breast and prostate cancer cells. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell-lineage-specific effects. Induced Raf expression can abrogate the cytokine dependence of certain hematopoietic cell lines (FDC-P1 and TF-1), a trait associated with tumorigenesis. In contrast, expression of activated PI3K or Akt does not abrogate the cytokine dependence of these hematopoietic cell lines, but does have positive effects on cell survival. However, activated PI3K and Akt can synergize with activated Raf to abrogate the cytokine dependence of another hematopoietic cell line (FL5.12) which is not transformed by activated Raf expression by itself. Activated Raf and Akt also confer a drug-resistant phenotype to these cells. Raf is more associated with proliferation and the prevention of apoptosis while Akt is more associated with the long-term clonogenicity. In breast cancer cells, activated Raf conferred resistance to the chemotherapeutic drugs doxorubicin and paclitaxel. Raf induced the expression of the drug pump Mdr-1 (a.k.a., Pgp) and the Bcl-2 anti-apoptotic protein. Raf did not appear to induce drug resistance by altering p53/p21Cip−1 expression, whose expression is often linked to regulation of cell cycle progression and drug resistance. Deregulation of the PI3K/PTEN/Akt pathway was associated with resistance to doxorubicin and 4-hydroxyl tamoxifen, a chemotherapeutic drug and estrogen receptor antagonist used in breast cancer therapy. In contrast to the drug-resistant breast cancer cells obtained after overexpression of activated Raf, cells expressing activated Akt displayed altered (decreased) levels of p53/p21Cip−1. Deregulated expression of the central phosphatase in the PI3K/PTEN/Akt pathway led to breast cancer drug resistance. Introduction of mutated forms of PTEN, which lacked lipid phosphatase activity, increased the resistance of the MCF-7 cells to doxorubicin, suggesting that these lipid phosphatase deficient PTEN mutants acted as dominant negative mutants to suppress wild-type PTEN activity. Finally, the PI3K/PTEN/Akt pathway appears to be more prominently involved in prostate cancer drug resistance than the Raf/MEK/ERK pathway. Some advanced prostate cancer cells express elevated levels of activated Akt which may suppress Raf activation. Introduction of activated forms of Akt increased the drug resistance of advanced prostate cancer cells. In contrast, introduction of activated forms of Raf did not increase the drug resistance of the prostate cancer cells. In contrast to the results observed in hematopoietic cells, Raf may normally promote differentiation in prostate cells which is suppressed in advanced prostate cancer due to increased expression of activated Akt arising from PTEN mutation. Thus in advanced prostate cancer it may be advantageous to induce Raf expression to promote differentiation, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK-induced proliferation. These signaling and anti-apoptotic pathways can have different effects on growth, prevention of apoptosis and induction of drug resistance in cells of various lineages which may be due to the expression of lineage-specific factors.  相似文献   

9.
Constitutive activation of M-Ras has previously been reported to cause morphologic and growth transformation of murine cells, suggesting that M-Ras plays a role in tumorigenesis. Cell transformation by M-Ras correlated with weak activation of the Raf/MEK/ERK pathway, although contributions from other downstream effectors were suggested. Recent studies indicate that signaling events distinct from the Raf/MEK/ERK cascade are critical for human tumorigenesis. However, it is unknown what signaling events M-Ras triggers in human cells. Using constitutively active M-Ras (Q71L) containing additional mutations within its effector-binding loop, we found that M-Ras induces MEK/ERK-dependent and -independent Elk1 activation as well as phosphatidylinositol 3 kinase (PI3K)/Akt and JNK/cJun activation in human MCF-7 breast cancer cells. Among several human cell lines examined, M-Ras-induced MEK/ERK-independent Elk1 activation was only detected in MCF-7 cells, and correlated with Rlf/M-Ras interaction and Ral/JNK activation. Supporting a role for M-Ras signaling in breast cancer, EGF activated M-Ras and promoted its interaction with endogenous Rlf. In addition, constitutive activation of M-Ras induced estrogen-independent growth of MCF-7 cells that was dependent on PI3K/Akt, MEK/ERK, and JNK activation. Thus, our studies demonstrate that M-Ras signaling activity differs between human cells, highlighting the importance of defining Ras protein signaling within each cell type, especially when designing treatments for Ras-induced cancer. These findings also demonstrate that M-Ras activity may be important for progression of EGFR-dependent tumors.  相似文献   

10.
BRCA1-induced apoptosis involves inactivation of ERK1/2 activities   总被引:7,自引:0,他引:7  
Mutation in the BRCA1 gene is associated with an increased risk of breast and ovarian cancer. Recent studies have shown that the BRCA1 gene product may be important in mediating responses to DNA damage and genomic instability. Previous studies have indicated that overexpression of BRCA1 can induce apoptosis or cell cycle arrest at the G(2)/M border in various cell types. Although the activation of JNK kinase has been implicated in BRCA1-induced apoptosis, the role of other members of the mitogen-activated protein kinase family in mediating the cellular response to BRCA1 has not yet been examined. In this study, we monitored the activities of three members of the MAPK family (ERK1/2, JNK, p38) in MCF-7 breast cancer cells and U2OS osteosarcoma cells after their exposure to a recombinant adenovirus expressing wild type BRCA1 (Ad.BRCA1). Overexpression of BRCA1 in MCF-7 cells resulted in arrest at the G(2)/M border; however, BRCA1 expression in U2OS cells induced apoptosis. Although BRCA1 induced JNK activation in both cell lines, there were marked differences in ERK1/2 activation in response to BRCA1 expression in these two cell lines. BRCA1-induced apoptosis in U2OS cells was associated with no activation of ERK1/2. In contrast, BRCA1 expression in MCF-7 cells resulted in the activation of both ERK1/2 and JNK. To directly assess the role of ERK1/2 in determining the cellular response to BRCA1, we used dominant negative mutants of MEK1 as well as MEK1/2 inhibitor PD98059. Our results indicate that inhibition of ERK1/2 activation resulted in increased apoptosis after BRCA1 expression in MCF-7 cells. Furthermore, BRCA1-induced apoptosis involved activation of JNK, induction of Fas-L/Fas interaction, and activation of caspases 8 and 9. The studies presented in this report indicate that the response to BRCA1 expression is determined by the regulation of both the JNK and ERK1/2 signaling pathways in cells.  相似文献   

11.
The epidermal growth factor receptor (EGFR) is important for normal development, differentiation, and cell proliferation. Deregulation of EGFR has been observed in breast cancer. EGFR and signal pathways activated by these receptors have been associated with an advanced tumor stage and a poor clinical prognosis in breast cancer, however, the precise mechanisms responsible for this process are still not known. Here we show that treatment of MCF-7 breast cancer cells with EGF activated Akt and ERK, induced morphological changes, and increased cell motility. In addition, the constitutive expression of Raf-1 and the use of a MEK inhibitor demonstrated the participation of the Raf/MEK/ERK pathway in these processes. Importantly we detected that EGF induced MRP-1, 3, 5 and 7 gene expression and an increase in MRP1 promoter activity. In conclusion, treatment of MCF-7 breast cancer cells with EGF, in the absence of other growth factors, resulted in activation of EGFR signal transduction pathways; which were related with cell motility and drug resistance.  相似文献   

12.
Mechanisms that mediate apoptosis resistance are attractive therapeutic targets for cancer. Protein kinase Cδ (PKCδ) is considered a pro-apoptotic factor in many cell types. In breast cancer, however, it has shown both pro-survival and pro-apoptotic effects. Here, we report for the first time that down-regulation of PKCδ per se leads to apoptosis of MDA-MB-231 cells. Inhibition of MEK1/2 by either PD98059 or U0126 suppressed the induction of apoptosis of PKCδ-depleted MDA-MB-231 cells but did not support survival of MCF-7 or MDA-MB-468 cells. Basal ERK1/2 phosphorylation was substantially higher in MDA-MB-231 cells than in the other cell lines. PKCδ depletion led to even higher ERK1/2 phosphorylation levels and also to lower expression levels of the ERK1/2 phosphatase MKP3. Depletion of MKP3 led to apoptosis and higher levels of ERK1/2 phosphorylation, suggesting that this may be a mechanism mediating the effect of PKCδ down-regulation. However, PKCδ silencing also induced increased MEK1/2 phosphorylation, indicating that PKCδ regulates ERK1/2 phosphorylation both upstream and downstream. Moreover, PKCδ silencing led to increased levels of the E3 ubiquitin ligase Nedd4, which is a potential regulator of MKP3, because down-regulation led to increased MKP3 levels. Our results highlight PKCδ as a potential target for therapy of breast cancers with high activity of the ERK1/2 pathway.  相似文献   

13.
Matrix metalloproteinases (MMPs) play an important role in cancer metastasis. Here, we investigated the effect of fibroblast growth factor-2 (FGF-2) and 12-O-tetradecanoylphorbol-13-acetate (TPA) on the secretion of type IV collagenases (MMP-2, MMP-9) in breast cancer MCF-7 cells. As shown by gelatin zymography, both FGF-2 and TPA stimulated the secretion of MMP-9 in MCF-7 cells while they did not change the level of MMP-2 secretion. Signaling cascade studies indicated that both FGF-2 and TPA induced Ras activation, c-Raf phosphorylation, mitogen-activated protein kinase/ERK kinase (MEK(1/2)) phosphorylation, and extracellular signal-regulated kinase (ERK(1/2)) phosphorylation. The FGF-2- and TPA-induced MMP-9 secretion was significantly inhibited by transient transfection of MCF-7 cells with dominant negative Ras (Ras-N17) and by treatment with MEK(1/2) inhibitor PD98059. A pan-protein kinase C (PKC) inhibitor, GF109203X, was found to totally abolish the FGF-2- and TPA-induced MMP-9 secretion and ERK(1/2) phosphorylation. Use of isoform-specific PKC inhibitors such as Rotllerin and G?6976 suggested, moreover, that the PKC-delta isoform is a likely component of FGF-2 and TPA trophic signaling. These results demonstrated that FGF-2 and TPA induce MMP-9 secretion in MCF-7 cells mainly through PKC-dependent activation of the Ras/ERK(1/2) signaling pathway.  相似文献   

14.
《Phytomedicine》2014,21(11):1221-1229
Our previous study has shown co-administration of guggulsterone resulted in significant increase in chemosensitivity of multidrug-resistant human breast cancer MCF-7/DOX cells to doxorubicin (DOX) in vitro. The present study was designed to investigate whether guggulsterone had the similar modulatory activities in vivo. MCF-7/DOX and MCF-7 xenograft mice models were established. At the end of the experiment (day 28), doxorubicin treatment alone did not significantly inhibit tumor growth in MCF-7/DOX xenograft, indicating that it retained doxorubicin resistance. Whereas, doxorubicin treatment alone significantly inhibited tumor growth in MCF-7 xenograft, suggesting that it maintained doxorubicin sensitivity. When doxorubicin and guggulsterone were co-administrated, their antitumor activities were augmented in MCF-7/DOX xenograft. However, combination therapy did not enhance the antitumor effects of doxorubicin in MCF-7 xenograft. The expression of proliferative cell nuclear antigens PCNA and Ki67 after doxorubicin treatment alone was not significantly different from that of vehicle group in MCF-7/DOX xenograft. On the contrary, doxorubicin treatment alone significantly reduced PCNA and Ki67 expression in MCF-7 xenograft. Combination therapy also significantly reduced PCNA and Ki67 expression in MCF-7/DOX xenograft, compared to doxorubicin treatment alone. However, combination therapy did not enhance the inhibitory effects of doxorubicin on PCNA and Ki67 expression in MCF-7 xenograft. Examining the apoptotic index by TUNEL assay showed similar results. Further studies demonstrated the inhibitory effects of guggulsterone on Bcl-2 and P-glycoprotein expression were the possible reason to increase chemosensitivity of MCF-7/DOX cells to doxorubicin in vivo. Examining body weight, hematological parameters, hepatic, cardiac and gastrointestinal tracts histopathology revealed that no significant signs of toxicity were related to guggulsterone. Guggulsterone might reverse doxorubicin resistance in vivo, with no severe side effects.  相似文献   

15.
Tamoxifen resistance represents a daunting challenge to the successful treatment for breast cancer. Krüppel-like factor 4 has critical roles in the development and progression of breast cancer, but its expression, function and regulation in the efficacy of TAM therapy in breast cancer have yet to be investigated. Here, we examined the clinical significance and biologic effects of KLF4 in breast cancer. Firstly, higher expression of KLF4 correlated with increased TAM sensitivity in breast cancer cells, and analysis of GEO datasets indicated that KLF4 expression was positively correlated with ERα and enhanced expression of KLF4 sensitized breast cancer patients to endocrine therapy. Knockdown of KLF4 in MCF-7 and BCAP37 cells led to increased TAM resistance, while ectopic KLF4 expression promoted the responsiveness to TAM in T47D and TAM-resistant MCF-7/TAM cells. Secondly, ectopic KLF4 overexpression suppressed MCF-7/TAM cell growth, invasion and migration. Moreover, KLF4 expression was down-regulated in breast cancer tumor tissues and high expression of KLF4 was associated with favorable outcomes. Mechanistically, KLF4 may enhance the responsiveness of breast cancer cells to TAM through suppressing mitogen-activated protein kinase (MAPK) signaling pathway. We found that ERK and p38 were more activated in MCF-7/TAM compared with MCF-7, and treatment with MAPK-specific inhibitors significantly suppressed cell viability. Knockdown of KLF4 activated ERK and p38 and drove MCF-7 cells to become resistant to TAM. Conversely, overexpression of KLF4 in MCF-7/TAM cells suppressed ERK and p38 signaling and resulted in increased sensitivity to TAM. Therefore, our findings suggested that KLF4 contributed to TAM sensitivity in breast cancer via phosphorylation modification of ERK and p38 signaling. Collectively, this study highlighted the significance of KLF4/MAPK signal interaction in regulating TAM resistance of breast cancer, and suggested that targeting KLF4/MAPK signaling may be a potential therapeutic strategy for breast cancer treatment, especially for the TAM-resistant patients.  相似文献   

16.
17.
18.
Multi-drug resistance of breast cancer is a major obstacle in chemotherapy of cancer treatments. Recently it was suggested that photodynamic therapy (PDT) can overcome drug resistance of tumors. ALA-PDT is based on the administration of 5-aminolevulinic acid (ALA), the natural precursor for the PpIX biosynthesis, which is a potent natural photosensitizer. In the present study we used the AlaAcBu, a multifunctional ALA-prodrug for photodynamic inactivation of drug resistant MCF-7/DOX breast cancer cells. Supplementation of low doses (0.2mM) of AlaAcBu to the cells significantly increased accumulation of PpIX in both MCF-7/WT and MCF-7/DOX cells in comparison to ALA, or ALA + butyric acid (BA). In addition, our results show that MCF-7/DOX cells are capable of producing higher levels of porphyrins than MCF-7/WT cells due to low expression of the enzyme ferrochelatase, which inserts iron into the tetra-pyrrol ring to form the end product heme. Light irradiation of the AlaAcBu treated cells activated efficient photodynamic killing of MCF-7/DOX cells similar to the parent MCF-7/WT cells, depicted by low mitochondrial enzymatic activity, LDH leakage and decreased cell survival following PDT. These results indicate that the pro-drug AlaAcBu is an effective ALA derivative for PDT treatments of multidrug resistant tumors.  相似文献   

19.
Matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression are pivotal steps in cancer metastasis. Herein, we investigated the effect of silibinin, a major constituent (flavanolignan) of the fruits of Silybum marianum, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 and VEGF expression in MCF-7 human breast cancer cells. The expression of MMP-9 and VEGF in response to TPA was increased, whereas TPA-induced MMP-9 and VEGF expression was decreased by silibinin. To investigate the regulatory mechanism of silibinin on TPA-induced MMP-9 and VEGF expression, we pretreated cells with various inhibitors, such as UO126 (MEK1/2 inhibitor), SP600125 (JNK inhibitor), and SB203580 (p38 inhibitor). Interestingly, TPA-induced MMP-9 expression was significantly inhibited by UO126, but not by SP600125 and SB203580. In addition, we pretreated cells with 100 μM silibinin prior to TPA treatment. TPA-induced MEK and ERK phosphorylation was significantly decreased by silibinin in MCF7 cells. TPA-induced VEGF expression was also suppressed by UO126. On the other hand, we found that adenoviral constitutive active-MEK (Ad-CA-MEK) significantly increased MMP-9 and VEGF expression. Taken together, we suggest that the inhibition of TPA-induced MMP-9 and VEGF expression by silibinin is mediated by the suppression of the Raf/MEK/ERK pathway in MCF-7 breast cancer cells.  相似文献   

20.
We studied the effects, either combined or alone, of lectin from Korean mistletoe (Viscum album var. coloratum agglutinin, VCA) and doxorubicin (DOX) in MCF-7 (estrogen receptor-positive) and MDA-MB231 (estrogen receptor-negative) human breast cancer cells. When VCA and DOX were combined, a strong synergistic effect was shown in cell growth inhibition, compared to VCA or DOX treatment alone. In quantitative apoptosis studies analyzed by flow cytometry, a combination of two agents showed an increase in apoptosis in both cells, compared to agents alone. Also, pro-apoptotic proteins including Bax, Bik, and Puma were increased in both cells, and the survival factor Bcl-2 was inhibited in MCF-7 cells when drugs were combined. Furthermore, VCA combined with DOX mediated S phase arrest, accompanied with a decrease of cell number at G0/G1 phase. This suggests that VCA and DOX combination may possibly lead to a novel strategy for the treatment of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号