首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Misfolding, oligomerization, and fibrillization of α-synuclein are thought to be central events in the onset and progression of Parkinson''s disease (PD) and related disorders. Although fibrillar α-synuclein is a major component of Lewy bodies (LBs), recent data implicate prefibrillar, oligomeric intermediates as the toxic species. However, to date, oligomeric species have not been identified in living cells.

Methodology/Principal Findings

Here we used bimolecular fluorescence complementation (BiFC) to directly visualize α-synuclein oligomerization in living cells, allowing us to study the initial events leading to α-synuclein oligomerization, the precursor to aggregate formation. This novel assay provides us with a tool with which to investigate how manipulations affecting α-synuclein aggregation affect the process over time. Stabilization of α-synuclein oligomers via BiFC results in increased cytotoxicity, which can be rescued by Hsp70 in a process that reduces the formation of α-synuclein oligomers. Introduction of PD-associated mutations in α-synuclein did not affect oligomer formation but the biochemical properties of the mutant α-synuclein oligomers differ from those of wild type α-synuclein.

Conclusions/Significance

This novel application of the BiFC assay to the study of the molecular basis of neurodegenerative disorders enabled the direct visualization of α-synuclein oligomeric species in living cells and its modulation by Hsp70, constituting a novel important tool in the search for therapeutics for synucleinopathies.  相似文献   

2.

Background

Lewy body in the substantia nigra is a cardinal pathological feature of Parkinson''s disease. Despite enormous efforts, the cause-and-effect relationship between Lewy body formation and the disorder is yet to be explicitly unveiled.

Methodology/Principal Findings

Here, we showed that radiating amyloid fibrils (RAFs) were instantly developed on the surface of synthetic lipid membranes from the β-sheet free oligomeric species of α-synuclein through a unit-assembly process. The burgeoning RAFs were successfully matured by feeding them with additional oligomers, which led to concomitant dramatic shrinkage and disintegration of the membranes by pulling off lipid molecules to the extending fibrils. Mitochondria and lysosomes were demonstrated to be disrupted by the oligomeric α-synuclein via membrane-dependent fibril formation.

Conclusion

The physical structure formation of amyloid fibrils, therefore, could be considered as detrimental to the cells by affecting membrane integrity of the intracellular organelles, which might be a molecular cause for the neuronal degeneration observed in Parkinson''s disease.  相似文献   

3.
4.
5.
D Glyceraldehyde 3 phosphatedehydrogenase(GAPDH ,EC 1.2 .1.12 )isakeyenzymeoftheglycolyticpathwaythatispresentinthecytosolofallorganismssofarstudied[1] .TheglycolyticGAPDHhasbeenremarkablyconservedduringevolution ,havingahomotetramericstructurewithsubunitsof 35 - 37kD[1] .GAPDHhasbeenisolatedfromavarietyofspecies[2 ] ,includingmesophilic ,moderatelythermophilicandhyperthermophilicmicroorganisms[3 ] .Theseenzymes ,whichdifferinthermalstability ,havebeenshowntobehighlysimilarinaminoacidse…  相似文献   

6.
Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson’s disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.  相似文献   

7.
This review is focused on the mammalian sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS). GAPDS plays the major role in the production of energy required for sperm cell movement and does not perform non-glycolytic functions that are characteristic of the somatic isoenzyme of glyceraldehyde-3-phosphate dehydrogenase. The GAPDS sequence is composed of 408 amino acid residues and includes an additional N-terminal region of 72 a.a. that binds the protein to the sperm tail cytoskeleton. GAPDS is present only in the sperm cells of mammals and lizards, possibly providing them with certain evolutionary advantages in reproduction. In this review, studies concerning the problems of GAPDS isolation, its catalytic properties, and its structural features are described in detail. GAPDS is much more stable compared to the somatic isoenzyme, perhaps due to the necessity of maintaining the enzyme function in the absence of protein expression. The site-directed mutagenesis approach revealed the two GAPDS-specific proline residues, as well as three salt bridges, which seem to be the basis of the increased stability of this protein. As distinct from the somatic isoenzyme, GAPDS exhibits positive cooperativity in binding of the coenzyme NAD+. The key role in transduction of structural changes induced by NAD+ is played by the salt bridge D311–H124. Disruption of this salt bridge cancels GAPDS cooperativity and twofold increases its enzymatic activity instead. The expression of GAPDS was detected in some melanoma cells as well. Its role in the development of certain pathologies, such as cancer and neurodegenerative diseases, is discussed.  相似文献   

8.
Oligomeric α-synuclein (αS) is considered to be the potential toxic species responsible for the onset and progression of Parkinson's disease, possibly through the disruption of lipid membranes. Although there is evidence that oligomers contain considerable amounts of secondary structure, more detailed data on the structural characteristics and how these mediate oligomer-lipid binding are critically lacking. This report is, to our knowledge, the first study that aimed to address the structure of oligomeric αS on a more detailed level. We have used tryptophan (Trp) fluorescence spectroscopy to gain insight into the structural features of oligomeric αS and the structural basis for oligomer-lipid interactions. Several single Trp mutants of αS were used to gain site-specific information about the microenvironments of monomeric αS, oligomeric αS and lipid-bound oligomeric αS. Acrylamide quenching and spectral analyses indicate that the Trp residues are considerably more solvent protected in the oligomeric form compared with the monomeric protein. In the oligomers, the negatively charged C-terminus was the most solvent exposed part of the protein. Upon lipid binding, a blue shift in fluorescence was observed for αS mutants where the Trp is located within the N-terminal region. These results suggest that, as in the case of monomeric αS, the N-terminus is critical in determining oligomer-lipid binding.  相似文献   

9.

Background

The question of how the aggregation of the neuronal protein α-synuclein contributes to neuronal toxicity in Parkinson''s disease has been the subject of intensive research over the past decade. Recently, attention has shifted from the amyloid fibrils to soluble oligomeric intermediates in the α-synuclein aggregation process. These oligomers are hypothesized to be cytotoxic and to permeabilize cellular membranes, possibly by forming pore-like complexes in the bilayer. Although the subject of α-synuclein oligomer-membrane interactions has attracted much attention, there is only limited evidence that supports the pore formation by α-synuclein oligomers. In addition the existing data are contradictory.

Methodology/Principal Findings

Here we have studied the mechanism of lipid bilayer disruption by a well-characterized α-synuclein oligomer species in detail using a number of in vitro bilayer systems and assays. Dye efflux from vesicles induced by oligomeric α-synuclein was found to be a fast all-or-none process. Individual vesicles swiftly lose their contents but overall vesicle morphology remains unaltered. A newly developed assay based on a dextran-coupled dye showed that non-equilibrium processes dominate the disruption of the vesicles. The membrane is highly permeable to solute influx directly after oligomer addition, after which membrane integrity is partly restored. The permeabilization of the membrane is possibly related to the intrinsic instability of the bilayer. Vesicles composed of negatively charged lipids, which are generally used for measuring α-synuclein-lipid interactions, were unstable to protein adsorption in general.

Conclusions/Significance

The dye efflux from negatively charged vesicles upon addition of α-synuclein has been hypothesized to occur through the formation of oligomeric membrane pores. However, our results show that the dye efflux characteristics are consistent with bilayer defects caused by membrane instability. These data shed new insights into potential mechanisms of toxicity of oligomeric α-synuclein species.  相似文献   

10.
α-Synuclein is a major component of filamentous inclusions that are histological hallmarks of Parkinson's disease and other α-synucleinopathies. Previous analyses have revealed that several polyphenols inhibit α-synuclein assembly with low micromolar IC50 values, and that SDS-stable, noncytotoxic soluble α-synuclein oligomers are formed in their presence. Structural elucidation of inhibitor-bound α-synuclein oligomers is obviously required for the better understanding of the inhibitory mechanism. In order to characterize inhibitor-bound α-synucleins in detail, we have prepared α-synuclein dimers in the presence of polyphenol inhibitors, exifone, gossypetin, and dopamine, and purified the products. Peptide mapping and mass spectrometric analysis revealed that exifone-treated α-synuclein monomer and dimer were oxidized at all four methionine residues of α-synuclein. Immunoblot analysis and redox-cycling staining of endoproteinase Asp-N-digested products showed that the N-terminal region (1-60) is involved in the dimerization and exifone binding of α-synuclein. Ultra-high-field NMR analysis of inhibitor-bound α-synuclein dimers showed that the signals derived from the N-terminal region of α-synuclein exhibited line broadening, confirming that the N-terminal region is involved in inhibitor-induced dimerization. The C-terminal portion still predominantly exhibited the random-coil character observed in monomeric α-synuclein. We propose that the N-terminal region of α-synuclein plays a key role in the formation of α-synuclein assemblies.  相似文献   

11.
Aggregation of α-synuclein (αSyn) in neurons produces the hallmark cytopathology of Parkinson disease and related synucleinopathies. Since its discovery, αSyn has been thought to exist normally in cells as an unfolded monomer. We recently reported that αSyn can instead exist in cells as a helically folded tetramer that resists aggregation and binds lipid vesicles more avidly than unfolded recombinant monomers (Bartels, T., Choi, J. G., and Selkoe, D. J. (2011) Nature 477, 107–110). However, a subsequent study again concluded that cellular αSyn is an unfolded monomer (Fauvet, B., Mbefo, M. K., Fares, M. B., Desobry, C., Michael, S., Ardah, M. T., Tsika, E., Coune, P., Prudent, M., Lion, N., Eliezer, D., Moore, D. J., Schneider, B., Aebischer, P., El-Agnaf, O. M., Masliah, E., and Lashuel, H. A. (2012) J. Biol. Chem. 287, 15345–15364). Here we describe a simple in vivo cross-linking method that reveals a major ∼60-kDa form of endogenous αSyn (monomer, 14.5 kDa) in intact cells and smaller amounts of ∼80- and ∼100-kDa forms with the same isoelectric point as the 60-kDa species. Controls indicate that the apparent 60-kDa tetramer exists normally and does not arise from pathological aggregation. The pattern of a major 60-kDa and minor 80- and 100-kDa species plus variable amounts of free monomers occurs endogenously in primary neurons and erythroid cells as well as neuroblastoma cells overexpressing αSyn. A similar pattern occurs for the homologue, β-synuclein, which does not undergo pathogenic aggregation. Cell lysis destabilizes the apparent 60-kDa tetramer, leaving mostly free monomers and some 80-kDa oligomer. However, lysis at high protein concentrations allows partial recovery of the 60-kDa tetramer. Together with our prior findings, these data suggest that endogenous αSyn exists principally as a 60-kDa tetramer in living cells but is lysis-sensitive, making the study of natural αSyn challenging outside of intact cells.  相似文献   

12.
NADH-dependent soluble l-α-hydroxyglutarate dehydrogenase (l-2-hydroxyglutarate: NAD+ 2-oxidoreductase) was found in a bacterium belonging to the genus Alcaligenes obtained from soil by citrate enrichment culture. A mutant with about 2.5-fold higher activity of the enzyme was derived from the bacterium and used as the enzyme source. High level of the enzyme was produced at the late stage of cultivation in the presence of citrate and with limited aeration. The enzyme was purified from the cells to homogeneity to give crystals, and its enzymatic properties were studied. The enzyme strongly reduced α-ketoglutarate to stereochemically pure l-α-hydroxyglutarate with NADH as a coenzyme, but it oxidized d-α-hydroxyglutarate with about 1/10 of the rate for l-form oxidation.  相似文献   

13.
Effects of α-crystallin and GroEL on the kinetics of thermal aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using dynamic light scattering and analytical ultracentrifugation. The analysis of the initial parts of the dependences of the hydrodynamic radius of protein aggregates on time shows that in the presence of α-crystallin or GroEL the kinetic regime of GAPDH aggregation is changed from the regime of diffusion-limited cluster–cluster aggregation to the regime of reaction-limited cluster–cluster aggregation, wherein the sticking probability for the colliding particles becomes lower the unity. In contrast to α-crystallin, GroEL does not interfere with formation of the start aggregates which include denatured GAPDH molecules. On the basis of the analytical ultracentrifugation data the conclusion has been made that the products of dissociation of GAPDH and α-crystallin or GroEL play an important role in the interactions of GAPDH and chaperones at elevated temperatures.  相似文献   

14.
The presence of intraneuronal deposits mainly formed by amyloid fibrils of the presynaptic protein α-synuclein (AS) is a hallmark of Parkinson disease. Currently, neurotoxicity is attributed to prefibrillar oligomeric species rather than the insoluble aggregates, although their mechanisms of toxicity remain elusive. Structural details of the supramolecular organization of AS oligomers are critically needed to decipher the structure-toxicity relationship underlying their pathogenicity. In this study, we employed site-specific fluorescence to get a deeper insight into the internal architecture of AS oligomeric intermediates. We demonstrate that AS oligomers are ordered assemblies possessing a well defined pattern of intermolecular contacts. Some of these contacts involve regions that form the β-sheet core in the fibrillar state, although their spatial arrangement may differ in the two aggregated forms. However, even though the two termini are excluded from the fibrillar core, they are engaged in a number of intermolecular interactions within the oligomer. Therefore, substantial structural remodeling of early oligomeric interactions is essential for fibril growth. The intermolecular contacts identified in AS oligomers can serve as targets for the rational design of anti-amyloid compounds directed at preventing oligomeric interactions/reorganizations.  相似文献   

15.
Abstract

LNA and α-L-LNA are promising candidates for the development of efficient oligonucleotide-based therapeutic agents. Here, we present a short overview of the structural results we have obtained for LNA:RNA and α-L-LNA:RNA hybrids. Specifically, we have shown that LNA acts as an A-type mimic, while α-L-LNA acts as a B-type mimic when built into oligonucleotides.  相似文献   

16.

Background

The mechanisms through which aberrant α-synuclein (ASYN) leads to neuronal death in Parkinson''s disease (PD) are uncertain. In isolated liver lysosomes, mutant ASYNs impair Chaperone Mediated Autophagy (CMA), a targeted lysosomal degradation pathway; however, whether this occurs in a cellular context, and whether it mediates ASYN toxicity, is unknown. We have investigated presently the effects of WT or mutant ASYN on the lysosomal pathways of CMA and macroautophagy in neuronal cells and assessed their impact on ASYN-mediated toxicity.

Methods and Findings

Novel inducible SH-SY5Y and PC12 cell lines expressing human WT and A53T ASYN, as well as two mutant forms that lack the CMA-targeting motif were generated. Such forms were also expressed in primary cortical neurons, using adenoviral transduction. In each case, effects on long-lived protein degradation, LC3 II levels (as a macroautophagy index), and cell death and survival were assessed. In both PC12 and SH-SY5Y cycling cells, induction of A53T ASYN evoked a significant decrease in lysosomal degradation, largely due to CMA impairment. In neuronally differentiated SH-SH5Y cells, both WT and A53T ASYN induction resulted in gradual toxicity, which was partly dependent on CMA impairment and compensatory macroautophagy induction. In primary neurons both WT and A53T ASYN were toxic, but only in the case of A53T ASYN did CMA dysfunction and compensatory macroautophagy induction occur and participate in death.

Conclusions

Expression of mutant A53T, and, in some cases, WT ASYN in neuronal cells leads to CMA dysfunction, and this in turn leads to compensatory induction of macroautophagy. Inhibition of these lysosomal effects mitigates ASYN toxicity. Therefore, CMA dysfunction mediates aberrant ASYN toxicity, and may be a target for therapeutic intervention in PD and related disorders. Furthermore, macroautophagy induction in the context of ASYN over-expression, in contrast to other settings, appears to be a detrimental response, leading to neuronal death.  相似文献   

17.
Tubulin protomers undergo an extensive array of post-translational modifications to tailor microtubules to specific tasks. One such modification, the acetylation of lysine 40 of α-tubulin, located in the lumen of microtubules, is associated with stable, long-living microtubule structures. MEC-17 was recently identified as the acetyltransferase that mediates this event. We have determined the crystal structure of the catalytic core of human MEC-17 in complex with its cofactor acetyl-CoA at 1.7 Å resolution. The structure reveals that the MEC-17 core adopts a canonical Gcn5-related N-acetyltransferase (GNAT) fold that is decorated with extensive surface loops. An enzymatic analysis of 33 MEC-17 surface mutants identifies hot-spot residues for catalysis and substrate recognition. A large, evolutionarily conserved hydrophobic surface patch that is critical for enzymatic activity is identified, suggesting that specificity is achieved by interactions with the α-tubulin substrate that extend outside of the modified surface loop. An analysis of MEC-17 mutants in Caenorhabditis elegans shows that enzymatic activity is dispensable for touch sensitivity.  相似文献   

18.
Lewy bodies and Lewy neurites, neuropathological hallmarks of several neurological diseases, are mainly made of filamentous assemblies of α-synuclein. However, other macromolecules including Tau, ubiquitin, glyceraldehyde-3-phosphate dehydrogenase, and glycosaminoglycans are routinely found associated with these amyloid deposits. Glyceraldehyde-3-phosphate dehydrogenase is a glycolytic enzyme that can form fibrillar aggregates in the presence of acidic membranes, but its role in Parkinson disease is still unknown. In this work, the ability of heparin to trigger the amyloid aggregation of this protein at physiological conditions of pH and temperature is demonstrated by infrared and fluorescence spectroscopy, dynamic light scattering, small angle x-ray scattering, circular dichroism, and fluorescence microscopy. Aggregation proceeds through the formation of short rod-like oligomers, which elongates in one dimension. Heparan sulfate was also capable of inducing glyceraldehyde-3-phosphate dehydrogenase aggregation, but chondroitin sulfates A, B, and C together with dextran sulfate had a negligible effect. Aided with molecular docking simulations, a putative binding site on the protein is proposed providing a rational explanation for the structural specificity of heparin and heparan sulfate. Finally, it is demonstrated that in vitro the early oligomers present in the glyceraldehyde-3-phosphate dehydrogenase fibrillation pathway promote α-synuclein aggregation. Taking into account the toxicity of α-synuclein prefibrillar species, the heparin-induced glyceraldehyde-3-phosphate dehydrogenase early oligomers might come in useful as a novel therapeutic strategy in Parkinson disease and other synucleinopathies.  相似文献   

19.
The translocation and accumulation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the nucleus has closely been associated with cell death induction. However, the mechanism of this process has not been completely understood. The E3 ubiquitin ligase siah-1 (seven in absentia homolog 1) has recently been identified as a potential shuttle protein to transport GAPDH from the cytosol to the nucleus. Previously, we have demonstrated that elevated glucose levels induce GAPDH nuclear accumulation in retinal Müller cells. Therefore, this study investigated the role of siah-1 in high glucose-induced GAPDH nuclear translocation and subsequent cell death in retinal Müller cells. High glucose significantly increased siah-1 expression within 12 h. Under hyperglycemic conditions, siah-1 formed a complex with GAPDH and was predominantly localized in the nucleus of Müller cells. siah-1 knockdown using 50 nm siah-1 small interfering RNA significantly decreased high glucose-induced GAPDH nuclear accumulation at 24 h by 43.8 ± 4.0%. Further, knockdown of siah-1 prevented high glucose-induced cell death of Müller cells potentially by inhibiting p53 phosphorylation consistent with previous observations, indicating that nuclear GAPDH induces cell death via p53 activation. Therefore, inhibition of GAPDH nuclear translocation and accumulation by targeting siah-1 promotes Müller cell survival under hyperglycemic conditions.  相似文献   

20.
《Journal of molecular biology》2019,431(19):3913-3919
Lewy bodies, hallmarks of Parkinson's disease, contain C-terminally truncated (ΔC) α-synuclein (α-syn). Here, we report fibril structures of three N-terminally acetylated (Ac) α-syn constructs, Ac1–140, Ac1–122, and Ac1–103, solved by cryoelectron microscopy. Both ΔC-α-syn variants exhibited faster aggregation kinetics, and Ac1–103 fibrils efficiently seeded the full-length protein, highlighting their importance in pathogenesis. Interestingly, fibril helical twists increased upon the removal of C-terminal residues and can be propagated through cross-seeding. Compared to that of Ac1–140, increased electron densities were seen in the N-terminus of Ac1–103, whereas the C-terminus of Ac1–122 appeared more structured. In accord, the respective termini of ΔC-α-syn exhibited increased protease resistance. Despite similar amyloid core residues, distinctive features were seen for both Ac1–122 and Ac1–103. Particularly, Ac1–103 has the tightest packed core with an additional turn, likely attributable to conformational changes in the N-terminal region. These molecular differences offer insights into the effect of C-terminal truncations on α-syn fibril polymorphism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号