首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass spectrometry (MS) is currently the most utilized analytical instrument for evaluating the metabolite composition of a biological sample at both the qualitative and quantitative level. The exponential growth of raw data generated through increasingly versatile mass spectrometers requires sophisticated algorithms to process and visualize the raw data to address biological questions. The structural and quantitative diversity of a single species’ metabolome (e.g. all metabolite species) under different experimental conditions itself forms a very large and complex dataset to analyze. We have developed a free, Java-based metabolomics application “Metabolite Imager” (www.metaboliteimager.com) that enables customized analysis and visualization of the metabolite distributions in tissues acquired through MS-based imaging approaches. Metabolite Imager algorithms perform customized targeted searching of metabolites through user-defined and publicly-available databases enabling the analysis of spatial distributions of large metabolite numbers in tissue sections. Metabolite Imager’s automated, two-dimensional image generator has several customizable features for producing high-resolution images. Additional Metabolite Imager algorithms support identifying targeted and unknown detected metabolites in selected tissue regions using spatially-based enrichment analysis that could impact metabolic engineering strategies. Co-localization algorithms of metabolites and selected ions by m/z enable analysis of precursor-product relationships in situ that will be important for expanding the biological context of metabolic pathways.  相似文献   

2.
The rapid advances in sequencing technologies over the last decade have enabled routine sequencing of microbial genomes. Despite notable achievements, metabolomics/metabolite profiling has not progressed with the same rapidity, which in part is due to the intrinsic complex chemical nature of the metabolome. However, well characterised metabolomes are essential if a comprehensive understanding of biological function and biotechnological applications are to be revealed and implemented. In the present study a hyphenated MS metabolite profiling procedure has been developed, predominantly for Bacillus species. The approach has been systematic in its development, delivering optimised procedures for the quenching of bacterial metabolism, extraction of metabolites, the separation and detection of components as well as data analysis, integration and visualisation workflows. Collectively, the procedure has enabled the detection of 27 % of the predicted Bacillus subtilis metabolome in the industrial HU36 strain. The analytical platform developed has been used to assess the chemotype of commercially used probiotic Bacillus strains, including a novel pigmented Bacillus strain HU36 that has potential either as a probiotic or source of antioxidants. The results are discussed in a biochemical context, revealing: (i), specific metabolic networks associated with pigment biosynthesis in HU36 and (ii), biotechnological applications through the demonstration of substantial equivalence.  相似文献   

3.
The optimal extraction of information from untargeted metabolomics analyses is a continuing challenge. Here, we describe an approach that combines stable isotope labeling, liquid chromatography– mass spectrometry (LC–MS), and a computational pipeline to automatically identify metabolites produced from a selected metabolic precursor. We identified the subset of the soluble metabolome generated from phenylalanine (Phe) in Arabidopsis thaliana, which we refer to as the Phe-derived metabolome (FDM) In addition to identifying Phe-derived metabolites present in a single wild-type reference accession, the FDM was established in nine enzymatic and regulatory mutants in the phenylpropanoid pathway. To identify genes associated with variation in Phe-derived metabolites in Arabidopsis, MS features collected by untargeted metabolite profiling of an Arabidopsis diversity panel were retrospectively annotated to the FDM and natural genetic variants responsible for differences in accumulation of FDM features were identified by genome-wide association. Large differences in Phe-derived metabolite accumulation and presence/absence variation of abundant metabolites were observed in the nine mutants as well as between accessions from the diversity panel. Many Phe-derived metabolites that accumulated in mutants also accumulated in non-Col-0 accessions and was associated to genes with known or suspected functions in the phenylpropanoid pathway as well as genes with no known functions. Overall, we show that cataloguing a biochemical pathway’s products through isotopic labeling across genetic variants can substantially contribute to the identification of metabolites and genes associated with their biosynthesis.

An isotopic labeling and LC–MS pipeline to identify metabolites produced from Phe and its integration with genome-wide association identifies genes associated with the phenylpropanoid pathway.  相似文献   

4.
Many untargeted LC–ESI–HRMS based metabolomics studies are still hampered by the large proportion of non-biological sample derived signals included in the generated raw data. Here, a novel, powerful stable isotope labelling (SIL)-based metabolomics workflow is presented, which facilitates global metabolome extraction, improved metabolite annotation and metabolome wide internal standardisation (IS). The general concept is exemplified with two different cultivation variants, (1) co-cultivation of the plant pathogenic fungi Fusarium graminearum on non-labelled and highly 13C enriched culture medium and (2) experimental cultivation under native conditions and use of globally U-13C labelled biological reference samples as exemplified with maize and wheat. Subsequent to LC–HRMS analysis of mixtures of labelled and non-labelled samples, two-dimensional data filtering of SIL specific isotopic patterns is performed to better extract truly biological derived signals together with the corresponding number of carbon atoms of each metabolite ion. Finally, feature pairs are convoluted to feature groups each representing a single metabolite. Moreover, the correction of unequal matrix effects in different sample types and the improvement of relative metabolite quantification with metabolome wide IS are demonstrated for the F. graminearum experiment. Data processing employing the presented workflow revealed about 300 SIL derived feature pairs corresponding to 87–135 metabolites in F. graminearum samples and around 800 feature pairs corresponding to roughly 350 metabolites in wheat samples. SIL assisted IS, by the use of globally U-13C labelled biological samples, reduced the median CV value from 7.1 to 3.6 % for technical replicates and from 15.1 to 10.8 % for biological replicates in the respective F. graminearum samples.  相似文献   

5.
6.

Background  

Deciphering the metabolome is essential for a better understanding of the cellular metabolism as a system. Typical metabolomics data show a few but significant correlations among metabolite levels when data sampling is repeated across individuals grown under strictly controlled conditions. Although several studies have assessed topologies in metabolomic correlation networks, it remains unclear whether highly connected metabolites in these networks have specific functions in known tissue- and/or genotype-dependent biochemical pathways.  相似文献   

7.
8.
High-throughput molecular analysis has become an integral part in organismal systems biology. In contrast, due to a missing systematic linkage of the data with functional and predictive theoretical models of the underlying metabolic network the understanding of the resulting complex data sets is lacking far behind. Here, we present a biomathematical method addressing this problem by using metabolomics data for the inverse calculation of a biochemical Jacobian matrix, thereby linking computer-based genome-scale metabolic reconstruction and in vivo metabolic dynamics. The incongruity of metabolome coverage by typical metabolite profiling approaches and genome-scale metabolic reconstruction was solved by the design of superpathways to define a metabolic interaction matrix. A differential biochemical Jacobian was calculated using an approach which links this metabolic interaction matrix and the covariance of metabolomics data satisfying a Lyapunov equation. The predictions of the differential Jacobian from real metabolomic data were found to be correct by testing the corresponding enzymatic activities. Moreover it is demonstrated that the predictions of the biochemical Jacobian matrix allow for the design of parameter optimization strategies for ODE-based kinetic models of the system. The presented concept combines dynamic modelling strategies with large-scale steady state profiling approaches without the explicit knowledge of individual kinetic parameters. In summary, the presented strategy allows for the identification of regulatory key processes in the biochemical network directly from metabolomics data and is a fundamental achievement for the functional interpretation of metabolomics data.  相似文献   

9.
Metabolomics is becoming an increasingly important tool in plant genomics to decipher the function of genes controlling biochemical pathways responsible for trait variation. Although theoretical models can integrate genes and metabolites for trait variation, biological networks require validation using appropriate experimental genetic systems. In this study, we applied an untargeted metabolite analysis to mature grain of wheat homoeologous group 3 ditelosomic lines, selected compounds that showed significant variation between wheat lines Chinese Spring and at least one ditelosomic line, tracked the genes encoding enzymes of their biochemical pathway using the wheat genome survey sequence and determined the genetic components underlying metabolite variation. A total of 412 analytes were resolved in the wheat grain metabolome, and principal component analysis indicated significant differences in metabolite profiles between Chinese Spring and each ditelosomic lines. The grain metabolome identified 55 compounds positively matched against a mass spectral library where the majority showed significant differences between Chinese Spring and at least one ditelosomic line. Trehalose and branched‐chain amino acids were selected for detailed investigation, and it was expected that if genes encoding enzymes directly related to their biochemical pathways were located on homoeologous group 3 chromosomes, then corresponding ditelosomic lines would have a significant reduction in metabolites compared with Chinese Spring. Although a proportion showed a reduction, some lines showed significant increases in metabolites, indicating that genes directly and indirectly involved in biosynthetic pathways likely regulate the metabolome. Therefore, this study demonstrated that wheat aneuploid lines are suitable experimental genetic system to validate metabolomics–genomics networks.  相似文献   

10.
A combinatory approach using metabolomics and gut microbiome analysis techniques was performed to unravel the nature and specificity of metabolic profiles related to gut ecology in obesity. This study focused on gut and liver metabolomics of two different mouse strains, the C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative sequence analysis using 454 pyrosequencing detected significant differences between the microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J phenotype likely displaying different energy utilization behavior by the bacterial community and the host. Furthermore, several metabolite groups could specifically be associated with the C57N phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based metabolite network approach enabled to extend the range of known metabolites to important bile acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced obesity mouse model in relation to the host–microbial nutritional adaptation.  相似文献   

11.
Metabolism, the conversion of nutrients into usable energy and biochemical building blocks, is an essential feature of all cells. The genetic factors responsible for inter-individual metabolic variability remain poorly understood. To investigate genetic causes of metabolome variation, we measured the concentrations of 74 metabolites across 100 segregants from a Saccharomyces cerevisiae cross by liquid chromatography-tandem mass spectrometry. We found 52 quantitative trait loci for 34 metabolites. These included linkages due to overt changes in metabolic genes, e.g., linking pyrimidine intermediates to the deletion of ura3. They also included linkages not directly related to metabolic enzymes, such as those for five central carbon metabolites to ira2, a Ras/PKA pathway regulator, and for the metabolites, S-adenosyl-methionine and S-adenosyl-homocysteine to slt2, a MAP kinase involved in cell wall integrity. The variant of ira2 that elevates metabolite levels also increases glucose uptake and ethanol secretion. These results highlight specific examples of genetic variability, including in genes without prior known metabolic regulatory function, that impact yeast metabolism.  相似文献   

12.
Novel tools are needed for efficient analysis and visualization of the massive data sets associated with metabolomics. Here, we describe a batch-learning self-organizing map (BL-SOM) for metabolome informatics that makes the learning process and resulting map independent of the order of data input. This approach was successfully used in analyzing and organizing the metabolome data forArabidopsis thaliana cells cultured under salt stress. Our 6 × 4 matrix presented patterns of metabolite levels at different time periods. A negative correlation was found between the levels of amino acids and metabolites related to glycolysis metabolism in response to this stress. Therefore, BL-SOM could be an excellent tool for clustering and visualizing high dimensional, complex metabolome data in a single map.  相似文献   

13.

Background

Dengue virus (DENV) is the most widespread arbovirus with an estimated 100 million infections occurring every year. Endemic in the tropical and subtropical areas of the world, dengue fever/dengue hemorrhagic fever (DF/DHF) is emerging as a major public health concern. The complex array of concurrent host physiologic changes has hampered a complete understanding of underlying molecular mechanisms of dengue pathogenesis.

Methodology/Principle Findings

Systems level characterization of serum metabolome and lipidome of adult DF patients at early febrile, defervescence, and convalescent stages of DENV infection was performed using liquid chromatography- and gas chromatography-mass spectrometry. The tractability of following metabolite and lipid changes in a relatively large sample size (n = 44) across three prominent infection stages allowed the identification of critical physiologic changes that coincided with the different stages. Sixty differential metabolites were identified in our metabolomics analysis and the main metabolite classes were free fatty acids, acylcarnitines, phospholipids, and amino acids. Major perturbed metabolic pathways included fatty acid biosynthesis and β-oxidation, phospholipid catabolism, steroid hormone pathway, etc., suggesting the multifactorial nature of human host responses. Analysis of phospholipids and sphingolipids verified the temporal trends and revealed association with lymphocytes and platelets numbers. These metabolites were significantly perturbed during the early stages, and normalized to control levels at convalescent stage, suggesting their potential utility as prognostic markers.

Conclusions/Significance

DENV infection causes temporally distinct serum metabolome and lipidome changes, and many of the differential metabolites are involved in acute inflammatory responses. Our global analyses revealed early anti-inflammatory responses working in concert to modulate early pro-inflammatory processes, thus preventing the host from development of pathologies by excessive or prolonged inflammation. This study is the first example of how an omic- approach can divulge the extensive, concurrent, and dynamic host responses elicited by DENV and offers plausible physiological insights to why DF is self limiting.  相似文献   

14.
In microbiology, gene disruption and subsequent experiments often center on phenotypic changes caused by one class of specialized metabolites (quorum sensors, virulence factors, or natural products), disregarding global downstream metabolic effects. With the recent development of mass spectrometry-based methods and technologies for microbial metabolomics investigations, it is now possible to visualize global production of diverse classes of microbial specialized metabolites simultaneously. Using imaging mass spectrometry (IMS) applied to the analysis of microbiology experiments, we can observe the effects of mutations, knockouts, insertions, and complementation on the interactive metabolome. In this study, a combination of IMS and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to visualize the impact on specialized metabolite production of a transposon insertion into a Pseudomonas aeruginosa phenazine biosynthetic gene, phzF2. The disruption of phenazine biosynthesis led to broad changes in specialized metabolite production, including loss of pyoverdine production. This shift in specialized metabolite production significantly alters the metabolic outcome of an interaction with Aspergillus fumigatus by influencing triacetylfusarinine production.  相似文献   

15.
Maintaining metabolic homeostasis is critical for plant growth and development. Here we report proteome and metabolome changes when the metabolic homeostasis is perturbed due to gene-dosage dependent mutation of Arabidopsis isopropylmalate dehydrogenases (IPMDHs). By integrating complementary quantitative proteomics and metabolomics approaches, we discovered that gradual ablation of the oxidative decarboxylation step in leucine biosynthesis caused imbalance of amino acid homeostasis, redox changes and oxidative stress, increased protein synthesis, as well as a decline in photosynthesis, which led to rearrangement of central metabolism and growth retardation. Disruption of IPMDHs involved in aliphatic glucosinolate biosynthesis led to synchronized increase of both upstream and downstream biosynthetic enzymes, and concomitant repression of the degradation pathway, indicating metabolic regulatory mechanisms in controlling glucosinolate biosynthesis.  相似文献   

16.
The genomic richness and intra-species heterogeneity of the prokaryotic world is suggestive of extensive biochemical diversity. In this study, metabolomic profiling permitted a phylogenetic assessment of metabolic diversification amongst environmental, medical and laboratory strains of Escherichia coli. Strikingly, no two E. coli isolates exhibited the same metabolite pool profile. Only 27% of detected metabolite spots in 2-dimensional high-performance thin layer chromatography (2DHPTLC) were found in all strains, indicating that a relatively small core of metabolism is conserved across a species. The population structure determined using metabolomics exhibited clustering of strains in parallel to genetic relatedness, as established by multi-locus DNA sequencing. On the other hand, metabolome patterns did not cluster in parallel with the pathogenicity or environmental origins of strains, but some unique spots were found in most bacteria. These results suggest that great metabolic diversity, to the point of individuality, is likely to be characteristic of a bacterial species. Furthermore, the high resolving power of 2DHPTLC metabolite fingerprinting provides an economic and powerful means of using metabolomics for the analysis of evolutionary relationships and the precise typing of organisms.  相似文献   

17.
The effects of copper exposure at five different concentrations on the freshwater alga Chlamydomonas reinhardtii were studied at the biochemical (metabolite), physiological (uptake kinetics and flow cytometry) and growth level. Changes at the physiological level were evident at the lowest exposure concentration while effects on the metabolome and on growth only occurred at the highest copper concentration tested. Flow cytometry revealed the presence of higher reactive oxygen species concentrations in algae exposed to higher copper concentrations and this was confirmed by a significant reduction in glutathione levels as part of the metabolomics assessment. Cu2+ uptake kinetic data contributed information on possible mechanisms of copper toxicity, revealing that, a decrease in efflux pumping might be at the basis of an increased metal accumulation at higher exposure levels. This study demonstrates the value of using a comparative approach to investigating the mechanisms of toxicity rather than focusing on a single level of organization or effect.  相似文献   

18.
19.
BackgroundMetabolomics is a well-established rapidly developing research field involving quantitative and qualitative metabolite assessment within biological systems. Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomics tools in natural products discovery, gene-function analysis, systems biology and diagnostic platforms.Scope of reviewWe review here some of the prominent metabolomics methodologies employed in data acquisition and analysis of natural products and disease-related biomarkers.Major conclusionsThis review demonstrates that metabolomics represents a highly adaptable technology with diverse applications ranging from environmental toxicology to disease diagnosis. Metabolomic analysis is shown to provide a unique snapshot of the functional genetic status of an organism by examining its biochemical profile, with relevance toward resolving phylogenetic associations involving horizontal gene transfer and distinguishing subgroups of genera possessing high genetic homology, as well as an increasing role in both elucidating biosynthetic transformations of natural products and detecting preclinical biomarkers of numerous disease states.General significanceThis review expands the interest in multiplatform combinatorial metabolomic analysis. The applications reviewed range from phylogenetic assignment, biosynthetic transformations of natural products, and the detection of preclinical biomarkers.  相似文献   

20.
The benthic amphipod Diporeia spp. was once the predominant macroinvertebrate in deep, offshore regions of the Laurentian Great Lakes. However, since the early 1990s, Diporeia populations have steadily declined across the area. It has been hypothesized that this decline is due to starvation from increasing competition for food with invasive dreissenid mussels. In order to gain a better understanding of the changes in Diporeia physiology during starvation, we applied two-dimensional gas chromatography coupled with time of flight mass spectrometry (GCXGC/TOF-MS) for investigating the responses in Diporeia metabolome during starvation. We starved Diporeia for 60 days and collected five organisms every 12 days for metabolome analyses. Upon arrival to the laboratory, organisms were flash frozen and served as control (day 0). We observed an increase in lipid oxidation and protein catabolism with subsequent declines of essential amino acids (proline, glutamine, and phenylalanine), down-regulation of glycerophospholipid and sphingolipid metabolism, and decreased polyunsaturated fatty acid abundance in nutritionally stressed Diporeia. Abundance of 1-Iodo-2-methylundecane, a metabolite closely related to insect pheromones, also declined with starvation. This research has further substantiated the applicability of GCXGC/TOF-MS as a research tool in the field of environmental metabolomics. The next step is to apply this new knowledge for evaluating nutritional status of feral Diporeia to elucidate the underlying cause(s) responsible for their decline in the Great Lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号