首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H Zhang  X Hu  Z Wang  Y Zhang  S Wang  N Wang  L Ma  L Leng  S Wang  Q Wang  Y Wang  Z Tang  N Li  Y Da  H Li 《PloS one》2012,7(7):e40736
We conducted a selection signature analysis using the chicken 60k SNP chip in two chicken lines that had been divergently selected for abdominal fat content (AFC) for 11 generations. The selection signature analysis used multiple signals of selection, including long-range allele frequency differences between the lean and fat lines, long-range heterozygosity changes, linkage disequilibrium, haplotype frequencies, and extended haplotype homozygosity. Multiple signals of selection identified ten signatures on chromosomes 1, 2, 4, 5, 11, 15, 20, 26 and Z. The 0.73 Mb PC1/PCSK1 region of the Z chromosome at 55.43-56.16 Mb was the most heavily selected region. This region had 26 SNP markers and seven genes, Mar-03, SLC12A2, FBN2, ERAP1, CAST, PC1/PCSK1 and ELL2, where PC1/PCSK1 are the chicken/human names for the same gene. The lean and fat lines had two main haplotypes with completely opposite SNP alleles for the 26 SNP markers and were virtually line-specific, and had a recombinant haplotype with nearly equal frequency (0.193 and 0.196) in both lines. Other haplotypes in this region had negligible frequencies. Nine other regions with selection signatures were PAH-IGF1, TRPC4, GJD4-CCNY, NDST4, NOVA1, GALNT9, the ESRP2-GALR1 region with five genes, the SYCP2-CADH4 with six genes, and the TULP1-KIF21B with 14 genes. Genome-wide association analysis showed that nearly all regions with evidence of selection signature had SNP effects with genome-wide significance (P<10(-6)) on abdominal fat weight and percentage. The results of this study provide specific gene targets for the control of chicken AFC and a potential model of AFC in human obesity.  相似文献   

2.
Goats and sheep are versatile domesticates that have been integrated into diverse environments and production systems. Natural and artificial selection have shaped the variation in the two species, but natural selection has played the major role among indigenous flocks. To investigate signals of natural selection, we analyzed genotype data generated using the caprine and ovine 50K SNP BeadChips from Barki goats and sheep that are indigenous to a hot arid environment in Egypt''s Coastal Zone of the Western Desert. We identify several candidate regions under selection that spanned 119 genes. A majority of the genes were involved in multiple signaling and signal transduction pathways in a wide variety of cellular and biochemical processes. In particular, selection signatures spanning several genes that directly or indirectly influenced traits for adaptation to hot arid environments, such as thermo-tolerance (melanogenesis) (FGF2, GNAI3, PLCB1), body size and development (BMP2, BMP4, GJA3, GJB2), energy and digestive metabolism (MYH, TRHDE, ALDH1A3), and nervous and autoimmune response (GRIA1, IL2, IL7, IL21, IL1R1) were identified. We also identified eight common candidate genes under selection in the two species and a shared selection signature that spanned a conserved syntenic segment to bovine chromosome 12 on caprine and ovine chromosomes 12 and 10, respectively, providing, most likely, the evidence for selection in a common environment in two different but closely related species. Our study highlights the importance of indigenous livestock as model organisms for investigating selection sweeps and genome-wide association mapping.  相似文献   

3.
Evolutionary pressures due to variation in climate play an important role in shaping phenotypic variation among and within species and have been shown to influence variation in phenotypes such as body shape and size among humans. Genes involved in energy metabolism are likely to be central to heat and cold tolerance. To test the hypothesis that climate shaped variation in metabolism genes in humans, we used a bioinformatics approach based on network theory to select 82 candidate genes for common metabolic disorders. We genotyped 873 tag SNPs in these genes in 54 worldwide populations (including the 52 in the Human Genome Diversity Project panel) and found correlations with climate variables using rank correlation analysis and a newly developed method termed Bayesian geographic analysis. In addition, we genotyped 210 carefully matched control SNPs to provide an empirical null distribution for spatial patterns of allele frequency due to population history alone. For nearly all climate variables, we found an excess of genic SNPs in the tail of the distributions of the test statistics compared to the control SNPs, implying that metabolic genes as a group show signals of spatially varying selection. Among our strongest signals were several SNPs (e.g., LEPR R109K, FABP2 A54T) that had previously been associated with phenotypes directly related to cold tolerance. Since variation in climate may be correlated with other aspects of environmental variation, it is possible that some of the signals that we detected reflect selective pressures other than climate. Nevertheless, our results are consistent with the idea that climate has been an important selective pressure acting on candidate genes for common metabolic disorders.  相似文献   

4.
Genetic diversity of native populations of North Eurasia is investigated using a panel of genetic markers of candidate genes for cold climate adaptation. A high level of within- and between-population variability is detected. Comparative analysis of data on North Eurasian populations combined with data on worldwide populations from the 1000 Genomes and HDGP projects reveals correlations of genetic diversity in candidate genes for cold climate adaptation with key climate parameters, as well as the increase of genetic diversity in markers of this group of genes with the increase of latitude, that is, as modern humans migrated out of Africa. Using the method of searching for extreme empirical values of the coefficient of genetic diversity, signals of directional selection for markers of six genes adaptive to cold (MYOF, LONP2, IFNL4, MKL1, SLC2A12, and CPT1A) are found. The data are discussed in framework of the hypothesis of decanalization of genome–phenome relationships under the pressure of natural selection during human settlement throughout the world.  相似文献   

5.
Humans living at high altitude (≥2,500 meters above sea level) have acquired unique abilities to survive the associated extreme environmental conditions, including hypoxia, cold temperature, limited food availability and high levels of free radicals and oxidants. Long-term inhabitants of the most elevated regions of the world have undergone extensive physiological and/or genetic changes, particularly in the regulation of respiration and circulation, when compared to lowland populations. Genome scans have identified candidate genes involved in altitude adaption in the Tibetan Plateau and the Ethiopian highlands, in contrast to populations from the Andes, which have not been as intensively investigated. In the present study, we focused on three indigenous populations from Bolivia: two groups of Andean natives, Aymara and Quechua, and the low-altitude control group of Guarani from the Gran Chaco lowlands. Using pooled samples, we identified a number of SNPs exhibiting large allele frequency differences over 900,000 genotyped SNPs. A region in chromosome 10 (within the cytogenetic bands q22.3 and q23.1) was significantly differentiated between highland and lowland groups. We resequenced ~1.5 Mb surrounding the candidate region and identified strong signals of positive selection in the highland populations. A composite of multiple signals like test localized the signal to FAM213A and a related enhancer; the product of this gene acts as an antioxidant to lower oxidative stress and may help to maintain bone mass. The results suggest that positive selection on the enhancer might increase the expression of this antioxidant, and thereby prevent oxidative damage. In addition, the most significant signal in a relative extended haplotype homozygosity analysis was localized to the SFTPD gene, which encodes a surfactant pulmonary-associated protein involved in normal respiration and innate host defense. Our study thus identifies two novel candidate genes and associated pathways that may be involved in high-altitude adaptation in Andean populations.  相似文献   

6.
We report a study of genome-wide, dense SNP (∼900K) and copy number polymorphism data of indigenous southern Africans. We demonstrate the genetic contribution to southern and eastern African populations, which involved admixture between indigenous San, Niger-Congo-speaking and populations of Eurasian ancestry. This finding illustrates the need to account for stratification in genome-wide association studies, and that admixture mapping would likely be a successful approach in these populations. We developed a strategy to detect the signature of selection prior to and following putative admixture events. Several genomic regions show an unusual excess of Niger-Kordofanian, and unusual deficiency of both San and Eurasian ancestry, which were considered the footprints of selection after population admixture. Several SNPs with strong allele frequency differences were observed predominantly between the admixed indigenous southern African populations, and their ancestral Eurasian populations. Interestingly, many candidate genes, which were identified within the genomic regions showing signals for selection, were associated with southern African-specific high-risk, mostly communicable diseases, such as malaria, influenza, tuberculosis, and human immunodeficiency virus/AIDs. This observation suggests a potentially important role that these genes might have played in adapting to the environment. Additionally, our analyses of haplotype structure, linkage disequilibrium, recombination, copy number variation and genome-wide admixture highlight, and support the unique position of San relative to both African and non-African populations. This study contributes to a better understanding of population ancestry and selection in south-eastern African populations; and the data and results obtained will support research into the genetic contributions to infectious as well as non-communicable diseases in the region.  相似文献   

7.

Background

Genome wide sequence analyses of malaria parasites from widely separated areas of the world have identified contrasting population structures and signatures of selection. To compare relatively closely situated but ecologically contrasting regions within an endemic African country, population samples of Plasmodium falciparum clinical isolates were collected in Ghana from Kintampo in the central forest-savannah area, and Navrongo in a drier savannah area ~350 km to the north with more seasonally-restricted transmission. Parasite DNA was sequenced and paired-end reads mapped to the P. falciparum reference genome.

Results

High coverage genome wide sequence data for 85 different clinical isolates enabled analysis of 121,712 single nucleotide polymorphisms (SNPs). The local populations had similar proportions of mixed genotype infections, similar SNP allele frequency distributions, and eleven chromosomal regions had elevated integrated haplotype scores (|iHS|) in both. A between-population Rsb metric comparing extended haplotype homozygosity indicated a stronger signal within Kintampo for one of these regions (on chromosome 14) and in Navrongo for two of these regions (on chromosomes 10 and 13). At least one gene in each of these identified regions is a potential target of locally varying selection. The candidates include genes involved in parasite development in mosquitoes, members of variant-expressed multigene families, and a leading vaccine-candidate target of immunity.

Conclusions

Against a background of very similar population structure and selection signatures in the P. falciparum populations of Ghana, three narrow genomic regions showed evidence indicating local differences in historical timing or intensity of selection. Sampling of closely situated populations across heterogeneous environments has potential to refine the mapping of important loci under temporally or spatially varying selection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1746-3) contains supplementary material, which is available to authorized users.  相似文献   

8.
Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6–23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.  相似文献   

9.
Through their domestication and subsequent selection, sheep have been adapted to thrive in a diverse range of environments. To characterise the genetic consequence of both domestication and selection, we genotyped 49,034 SNP in 2,819 animals from a diverse collection of 74 sheep breeds. We find the majority of sheep populations contain high SNP diversity and have retained an effective population size much higher than most cattle or dog breeds, suggesting domestication occurred from a broad genetic base. Extensive haplotype sharing and generally low divergence time between breeds reveal frequent genetic exchange has occurred during the development of modern breeds. A scan of the genome for selection signals revealed 31 regions containing genes for coat pigmentation, skeletal morphology, body size, growth, and reproduction. We demonstrate the strongest selection signal has occurred in response to breeding for the absence of horns. The high density map of genetic variability provides an in-depth view of the genetic history for this important livestock species.  相似文献   

10.

Background

Genome wide sequence analyses of malaria parasites from widely separated areas of the world have identified contrasting population structures and signatures of selection. To compare relatively closely situated but ecologically contrasting regions within an endemic African country, population samples of Plasmodium falciparum clinical isolates were collected in Ghana from Kintampo in the central forest-savannah area, and Navrongo in a drier savannah area ~350 km to the north with more seasonally-restricted transmission. Parasite DNA was sequenced and paired-end reads mapped to the P. falciparum reference genome.

Results

High coverage genome wide sequence data for 85 different clinical isolates enabled analysis of 121,712 single nucleotide polymorphisms (SNPs). The local populations had similar proportions of mixed genotype infections, similar SNP allele frequency distributions, and eleven chromosomal regions had elevated integrated haplotype scores (|iHS|) in both. A between-population Rsb metric comparing extended haplotype homozygosity indicated a stronger signal within Kintampo for one of these regions (on chromosome 14) and in Navrongo for two of these regions (on chromosomes 10 and 13). At least one gene in each of these identified regions is a potential target of locally varying selection. The candidates include genes involved in parasite development in mosquitoes, members of variant-expressed multigene families, and a leading vaccine-candidate target of immunity.

Conclusions

Against a background of very similar population structure and selection signatures in the P. falciparum populations of Ghana, three narrow genomic regions showed evidence indicating local differences in historical timing or intensity of selection. Sampling of closely situated populations across heterogeneous environments has potential to refine the mapping of important loci under temporally or spatially varying selection.
  相似文献   

11.
Adaptation to environmental conditions within the native range of exotic species can condition the invasion success of these species outside their range. The striking success of the Asian tiger mosquito, Aedes albopictus, to invade temperate regions has been attributed to the winter survival of diapause eggs in cold environments. In this study, we evaluate genetic polymorphisms (SNPs) and wing morphometric variation among three biogeographical regions of the native range of A. albopictus. Reconstructed demographic histories of populations show an initial expansion in Southeast Asia and suggest that marine regression during late Pleistocene and climate warming after the last glacial period favored expansion of populations in southern and northern regions, respectively. Searching for genomic signatures of selection, we identified significantly differentiated SNPs among which several are located in or within 20 kb distance from candidate genes for cold adaptation. These genes involve cellular and metabolic processes and several of them have been shown to be differentially expressed under diapausing conditions. The three biogeographical regions also differ for wing size and shape, and wing size increases with latitude supporting Bergmann's rule. Adaptive genetic and morphometric variation observed along the climatic gradient of A. albopictus native range suggests that colonization of northern latitudes promoted adaptation to cold environments prior to its worldwide invasion.  相似文献   

12.

Aim

Research on population genetic patterns and potential distribution dynamics can provide insights into the development of pest management strategies. Herein, we integrated population genetic analyses with the climatic niche approach to investigate spatial population genetic variations and potential geographical distribution (PGD) of the herbivorous pest Phytomyza horticola. We also analysed its population response patterns to both late Pleistocene climatic events and future climate change.

Location

China.

Methods

We analysed the patterns of genetic diversity distribution in 29 populations from 19 regions across China using three mitochondrial (COI, COII and Cytb) genes as markers. We estimated demographic histories using neutrality tests, mismatch distributions and Bayesian skyline plots. Changes in PGD were assessed using an ecological niche model.

Results

High genetic diversity was found in most populations, and the northern population exhibited higher haplotype diversity. The population genetic structure included the Tibet lineage and a large lineage comprising the remaining populations. Demographic analyses indicated that rapid population expansion occurred during the cold Last Glacial Maximum. In addition, our projections suggested that P. horticola currently has a vast PGD in China, for which the human influence index was the strongest variable. Large areas of cold northern regions were highly suitable for its survival. Under future global warming, highly suitable habitats will shift towards the higher latitudes.

Main conclusions

P. horticola is widely distributed across varied environments, which may be attributed to its high degree of genetic variation. Human activities likely facilitated the current PGD and the frequent gene flow that homogenized differentiation among most populations. In addition, P. horticola exhibits strong adaptability to cold climates and environments from the past to the future. Considering future climatic changes, prevention and control should focus on high-latitude regions, and vigilance regarding human-mediated pest dispersals and outbreaks should be maintained.  相似文献   

13.
Understanding the influences of population structure, selection, and recombination on polymorphism and linkage disequilibrium (LD) is integral to mapping genes contributing to drug resistance or virulence in Plasmodium falciparum. The parasite's short generation time, coupled with a high cross-over rate, can cause rapid LD break-down. However, observations of low genetic variation have led to suggestions of effective clonality: selfing, population admixture, and selection may preserve LD in populations. Indeed, extensive LD surrounding drug-resistant genes has been observed, indicating that recombination and selection play important roles in shaping recent parasite genome evolution. These studies, however, provide only limited information about haplotype variation at local scales. Here we describe the first (to our knowledge) chromosome-wide SNP haplotype and population recombination maps for a global collection of malaria parasites, including the 3D7 isolate, whose genome has been sequenced previously. The parasites are clustered according to continental origin, but alternative groupings were obtained using SNPs at 37 putative transporter genes that are potentially under selection. Geographic isolation and highly variable multiple infection rates are the major factors affecting haplotype structure. Variation in effective recombination rates is high, both among populations and along the chromosome, with recombination hotspots conserved among populations at chromosome ends. This study supports the feasibility of genome-wide association studies in some parasite populations.  相似文献   

14.
《Genomics》2022,114(4):110423
BackgroundIndigenous Sudanese cattle are mainly indicine/zebu (humped) type. They thrive in the harshest dryland environments characterised by high temperatures, long seasonal dry periods, nutritional shortages, and vector disease challenges. Here, we sequenced 60 indigenous Sudanese cattle from six indigenous breeds and analysed the data using three genomic scan approaches to unravel cattle adaptation to the African dryland region.ResultsWe identified a set of gene-rich selective sweep regions, detected mostly on chromosomes 5, 7 and 19, shared across African and Gir zebu. These include genes involved in immune response, body size and conformation, and heat stress response. We also identified selective sweep regions unique to Sudanese zebu. Of these, a 250 kb selective sweep on chromosome 16 spans seven genes, including PLCH2, PEX10, PRKCZ, and SKI, which are involved in alternative adaptive metabolic strategies of insulin signalling, glucose homeostasis, and fat metabolism.ConclusionsOur results suggest that environmental adaptation may involve recent and ancient selection at gene-rich regions, which might be under a common regulatory genetic control, in zebu cattle.  相似文献   

15.

Background

The HUGO Pan-Asian SNP Consortium (PASNP) has generated a genetic resource of almost 55,000 autosomal single nucleotide polymorphisms (SNPs) across more than 1,800 individuals from 73 urban and indigenous populations in Asia. This has offered valuable insights into the correlation between the genetic ancestry of these populations with major linguistic systems and geography. Here, we attempt to understand whether adaptation to local climate, diet and environment partly explains the genetic variation present in these populations by investigating the genomic signatures of positive selection.

Results

To evaluate the impact to the selection analyses due to the considerably lower SNP density as compared to other population genetics resources such as the International HapMap Project (HapMap) or the Singapore Genome Variation Project, we evaluated the extent of haplotype phasing switch errors and the consistency of selection signals from three haplotype-based approaches (iHS, XP-EHH, haploPS) when the HapMap data is thinned to a similar density as PASNP. We subsequently applied haploPS to detect and characterize positive selection in the PASNP populations, identifying 59 genomics regions that were selected in at least one PASNP populations. A cluster analysis on the basis of these 59 signals showed that indigenous populations such as the Negrito from Malaysia and Philippines, the China Hmong, and the Taiwan Ami and Atayal shared more of these signals. We also reported evidence of a positive selection signal encompassing the beta globin gene in the Taiwan Ami and Atayal that was distinct from the signal in the HapMap Africans, suggesting the possibility of convergent evolution at this locus due to malarial selection.

Conclusions

We established that the lower SNP content of the PASNP data conferred weaker ability to detect signatures of positive selection, but the availability of the new approach haploPS retained modest power. Out of all the populations in PASNP, we identified only 59 signals, suggesting a strong need for high-density population-level genotyping data or sequencing data in order to achieve a comprehensive survey of positive selection in Asian populations.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-332) contains supplementary material, which is available to authorized users.  相似文献   

16.
Detecting positive selection using genomic data is critical to understanding the role of adaptive evolution. Of particular interest in this context is sex chromosomes since they are thought to play a special role in local adaptation and speciation. We sought to circumvent the challenges associated with statistical phasing when using haplotype‐based statistics in sweep scans by benefitting from that whole chromosome haplotypes of the sex chromosomes can be obtained by resequencing of individuals of the hemizygous sex. We analyzed whole Z chromosome haplotypes from 100 females from several populations of four black and white flycatcher species (in birds, females are ZW and males ZZ). Based on integrated haplotype score (iHS) and number of segregating sites by length (nSL) statistics, we found strong and frequent haplotype structure in several regions of the Z chromosome in each species. Most of these sweep signals were population‐specific, with essentially no evidence for regions under selection shared among species. Some completed sweeps were revealed by the cross‐population extended haplotype homozygosity (XP‐EHH) statistic. Importantly, by using statistically phased Z chromosome data from resequencing of males, we failed to recover the signals of selection detected in analyses based on whole chromosome haplotypes from females; instead, what likely represent false signals of selection were frequently seen. This highlights the power issues in statistical phasing and cautions against conclusions from selection scans using such data. The detection of frequent selective sweeps on the avian Z chromosome supports a large role of sex chromosomes in adaptive evolution.  相似文献   

17.
Hypertension is a leading cause of stroke, heart disease, and kidney failure. The genetic basis of blood pressure variation is largely unknown but is likely to involve genes that influence renal salt handling and arterial vessel tone. Here we argue that susceptibility to hypertension is ancestral and that differential susceptibility to hypertension is due to differential exposure to selection pressures during the out-of-Africa expansion. The most important selection pressure was climate, which produced a latitudinal cline in heat adaptation and, therefore, hypertension susceptibility. Consistent with this hypothesis, we show that ecological variables, such as latitude, temperature, and rainfall, explain worldwide variation in heat adaptation as defined by seven functional alleles in five genes involved in blood pressure regulation. The latitudinal cline in heat adaptation is consistent worldwide and is largely unmatched by latitudinal clines in short tandem repeat markers, control single nucleotide polymorphisms, or non-functional single nucleotide polymorphisms within the five genes. In addition, we show that latitude and one of these alleles, GNB3 (G protein β3 subunit) 825T, account for a major portion of worldwide variation in blood pressure. These results suggest that the current epidemic of hypertension is due to exposures of the modern period interacting with ancestral susceptibility. Modern populations differ in susceptibility to these new exposures, however, such that those from hot environments are more susceptible to hypertension than populations from cold environments. This differential susceptibility is likely due to our history of adaptation to climate.  相似文献   

18.
《Genomics》2022,114(5):110448
African sheep manifest diverse but distinct physio-anatomical traits, which are the outcomes of natural- and human-driven selection. Here, we generated 34.8 million variants from 150 indigenous northeast African sheep genomes sequenced at an average depth of ~54× for 130 samples (Ethiopia, Libya) and ~20× for 20 samples (Sudan). These represented sheep from diverse environments, tail morphology and post-Neolithic introductions to Africa. Phylogenetic and model-based admixture analysis provided evidence of four genetic groups corresponding to altitudinal geographic origins, tail morphotypes and possible historical introduction and dispersal of the species into and across the continent. Running admixture at higher levels of K (6 ≤ K ≤ 25), revealed cryptic levels of genome intermixing as well as distinct genetic backgrounds in some populations. Comparative genomic analysis identified targets of selection that spanned conserved haplotype structures overlapping clusters of genes and gene families. These were related to hypoxia responses, ear morphology, caudal vertebrae and tail skeleton length, and tail fat-depot structures. Our findings provide novel insights underpinning morphological variation and response to human-driven selection and environmental adaptation in African indigenous sheep.  相似文献   

19.
The Brangus breed was developed to combine the superior characteristics of both of its founder breeds, Angus and Brahman. It combines the high adaptability to tropical and subtropical environments, disease resistance, and overall hardiness of Zebu cattle with the reproductive potential and carcass quality of Angus. It is known that the major histocompatibility complex (MHC, also known as bovine leucocyte antigen: BoLA), located on chromosome 23, encodes several genes involved in the adaptive immune response and may be responsible for adaptation to harsh environments. The objective of this work was to evaluate whether the local breed ancestry percentages in the BoLA locus of a Brangus population diverged from the estimated genome-wide proportions and to identify signatures of positive selection in this genomic region. For this, 167 animals (100 Brangus, 45 Angus and 22 Brahman) were genotyped using a high-density single nucleotide polymorphism array. The local ancestry analysis showed that more than half of the haplotypes (55.0%) shared a Brahman origin. This value was significantly different from the global genome-wide proportion estimated by cluster analysis (34.7% Brahman), and the proportion expected by pedigree (37.5% Brahman). The analysis of selection signatures by genetic differentiation (Fst) and extended haplotype homozygosity-based methods (iHS and Rsb) revealed 10 and seven candidate regions, respectively. The analysis of the genes located within these candidate regions showed mainly genes involved in immune response-related pathway, while other genes and pathways were also observed (cell surface signalling pathways, membrane proteins and ion-binding proteins). Our results suggest that the BoLA region of Brangus cattle may have been enriched with Brahman haplotypes as a consequence of selection processes to promote adaptation to subtropical environments.  相似文献   

20.
MOTIVATION: The identification of signatures of positive selection can provide important insights into recent evolutionary history in human populations. Current methods mostly rely on allele frequency determination or focus on one or a small number of candidate chromosomal regions per study. With the availability of large-scale genotype data, efficient approaches for an unbiased whole genome scan are becoming necessary. METHODS: We have developed a new method, the whole genome long-range haplotype test (WGLRH), which uses genome-wide distributions to test for recent positive selection. Adapted from the long-range haplotype (LRH) test, the WGLRH test uses patterns of linkage disequilibrium (LD) to identify regions with extremely low historic recombination. Common haplotypes with significantly longer than expected ranges of LD given their frequencies are identified as putative signatures of recent positive selection. In addition, we have also determined the ancestral alleles of SNPs by genotyping chimpanzee and gorilla DNA, and have identified SNPs where the non-ancestral alleles have risen to extremely high frequencies in human populations, termed 'flipped SNPs'. Combining the haplotype test and the flipped SNPs determination, the WGLRH test serves as an unbiased genome-wide screen for regions under putative selection, and is potentially applicable to the study of other human populations. RESULTS: Using WGLRH and high-density oligonucleotide arrays interrogating 116 204 SNPs, we rapidly identified putative regions of positive selection in three populations (Asian, Caucasian, African-American), and extended these observations to a fourth population, Yoruba, with data obtained from the International HapMap consortium. We mapped significant regions to annotated genes. While some regions overlap with genes previously suggested to be under positive selection, many of the genes have not been previously implicated in natural selection and offer intriguing possibilities for further study. AVAILABILITY: the programs for the WGLRH algorithm are freely available and can be downloaded at http://www.affymetrix.com/support/supplement/WGLRH_program.zip.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号