首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
A unique cytoplast preparation from Ehrlich ascites tumor cells (G. V. Henius, P. C. Laris, and J. D. Woodburn (1979) Exp. Cell. Res. 121, 337-345), highly enriched in plasma membranes, was employed to characterize the high-affinity plasma membrane calcium-extrusion pump and its associated adenosine triphosphatase (ATPase). An ATP-dependent calcium-transport system which had a high affinity for free calcium (K0.5 = 0.040 +/- 0.005 microM) was identified. Two different calcium-stimulated ATPase activities were detected. One had a low (K0.5 = 136 +/- 10 microM) and the other a high (K0.5 = 0.103 +/- 0.077 microM) affinity for free calcium. The high-affinity enzyme appeared to represent the ubiquitous high-affinity plasma membrane (Ca2+ + Mg2+)-ATPase (calcium-stimulated, magnesium-dependent ATPase) seen in normal cells. Both calcium transport and the (Ca2+ + Mg2+)-ATPase were significantly stimulated by the calcium-dependent regulatory protein calmodulin, especially when endogenous activator was removed by treatment with the calcium chelator ethylene glycol bis(beta-aminoethyl ether) N,N'-tetraacetic acid. Other similarities between calcium transport and the (Ca2+ + Mg2+)-ATPase included an insensitivity to ouabain (0.5 mM), lack of activation by potassium (20 mM), and a requirement for magnesium. These similar properties suggested that the (Ca2+ + Mg2+)-ATPase represents the enzymatic basis of the high-affinity calcium pump. The calcium pump/enzyme system was inhibited by orthovanadate at comparatively high concentrations (calcium transport: K0.5 congruent to 100 microM; (Ca2+ + Mg2+)-ATPase: K0.5 greater than 100 microM). Upon Hill analysis, the tumor cell (Ca2+ + Mg2+)-ATPase failed to exhibit cooperative activation by calcium which is characteristic of the analogous enzyme in the plasma membrane of normal cells.  相似文献   

2.
Transplantable rat osteosarcoma plasma membrane preparations contain high-affinity and low-affinity calcium-stimulated ATPases. The high-affinity enzyme displayed a K0.5 for calcium of 0.03 microM, a Vmax of 99.2 nmol/min/mg, and a requirement for magnesium ions. It was not inhibited by 20 microM trifluoperazine nor stimulated by the addition of 2 ng of calmodulin. Lack of stimulation with exogenous calmodulin may be related to the high endogenous calmodulin content of the membrane preparations. The low-affinity Ca2+- or Mg2+-ATPase displayed a K0.5 for calcium of approximately 2.40 mM (Vmax of 185 nmol/min/mg) and a K0.5 for magnesium of approximately 2.75 mM (Vmax of 250 nmol/min/mg).  相似文献   

3.
Plasma membrane enriched fraction isolated from the fundus smooth muscle of rat stomach displayed Ca2+-stimulated ATPase activity in the absence of Mg2+. The Ca2+ dependence of such an ATPase activity can be resolved into two hyperbolic components with a high affinity (Km = 0.4 microM) and a low affinity (Km = 0.6 mM) for Ca2+. Distribution of these high-affinity and low-affinity Ca2+-ATPase activities parallels those of several plasma membrane marker enzyme activities but not those of endoplasmic reticulum and mitochondrial membrane marker enzyme activities. Mg2+ also stimulates the ATPase in the absence of Ca2+. Unlike the Mg2+-ATPase and low-affinity Ca2+-ATPase, the plasmalemmal high-affinity Ca2+-ATPase is not sensitive to the inhibitory effect of sodium azide or Triton X-100 treatment. The high-affinity Ca2+-ATPase is noncompetitively inhibited by Mg2+ with respect to Ca2+ stimulation. Such an inhibitory effect of Mg2+ is potentiated by Triton X-100 treatment of the membrane fraction. Calmodulin has little effect on the high-affinity Ca2+-ATPase activity of the plasma membrane enriched fraction with or without EDTA pretreatment. Findings of this novel, Mg2+-independent, high-affinity Ca2+-ATPase activity in the rat stomach smooth muscle plasma membrane are discussed with those of Mg2+-dependent, high-affinity Ca2+-ATPase activities previously reported in other smooth muscle plasma membrane preparations in relation to the plasma membrane Ca2+-pump.  相似文献   

4.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

5.
High affinity Ca2+-stimulated Mg2+-dependent ATPase activity of nerve ending particles (synaptosomes) from rat brain tissue appears to be associated primarily with isolated synaptic plasma membranes. The synaptic membrane (Ca2+ + Mg2+)-ATPase activity was found to exhibit strict dependence on Mg2+ for the presence of the activity, a high affinity for Ca2+ (K0.5 = 0.23 microM), and relatively high affinities for both Mg2+ and ATP (K0.5 = 6.0 microM for Mg2+ and KM = 18.9 microM for ATP). These kinetic constants were determined in incubation media that were buffered with the divalent cation chelator trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid. The enzyme activity was not inhibited by ouabain or oligomycin but was sensitive to low concentrations of vanadate. The microsomal membrane subfraction was the other brain subcellular fraction with a high affinity (Ca2+ + Mg2+)-ATPase activity which approximated that of the synaptic plasma membranes. The two membrane-related high affinity (Ca2+ + Mg2+)-ATPase activities could be distinguished on the basis of their differential sensitivity to vanadate at concentrations below 10 microM. Only the synaptic plasma membrane (Ca2+ + Mg2+)-ATPase was inhibited by 0.25-10 microM vanadate. The studies described here indicate the possible involvement of both the microsomal and the neuronal plasma membrane (Ca2+ + Mg2+)-ATPase in high affinity Ca2+ transport across membranes of brain neurons. In addition, they suggest a means by which the relative contributions of each transport system might be evaluated based on their differential sensitivity to inhibition by vanadate.  相似文献   

6.
A membrane fraction enriched in axolemma was obtained from optic nerves of the squid (Sepiotheutis sepioidea) by differential centrifugation and density gradient fractionation. The preparation showed an oligomycin- and NaN3-insensitive (Ca2+ + Mg2+)-ATPase activity. The dependence of the ATPase activity on calcium concentration revealed the presence of two saturable components. One had a high affinity for calcium (K1 1/2 = 0.12 microM) and the second had a comparatively low affinity (K2 1/2 = 49.5 microM). Only the high-affinity component was specifically inhibited by vanadate (K1 = 35 microM). Calmodulin (12.5 micrograms/ml) stimulated the (Ca2+ + Mg2+)-ATPase by approx. 50%, and this stimulation was abolished by trifluoperazine (10 microM). Further treatment of the membrane fraction with 1% Nonidet P-40 resulted in a partial purification of the ATPase about 15-fold compared to the initial homogenate. This (Ca2+ + Mg2+)-ATPase from squid optic nerve displays some properties similar to those of the uncoupled Ca2+-pump described in internally dialyzed squid axons, suggesting that it could be its enzymatic basis.  相似文献   

7.
A high-affinity Mg2+-independent Ca2+-ATPase (Ca2+-ATPase) has been differentiated from the Mg2+-dependent, Ca2+-stimulated ATPase (Ca2+,Mg2+-ATPase) in rat brain synaptosomal membranes. Using ATP as a substrate, the K0.5 of Ca2+ for Ca2+-ATPase was found to be 1.33 microM with a Km for ATP of 19 microM and a Vmax of 33 nmol/mg/min. Using Ca-ATP as a substrate, the Km for Ca-ATP was found to be 0.22 microM. Unlike Ca2+,Mg2+-ATPase, Ca2+-ATPase was not inhibited by N-ethylmaleimide, trifluoperazine, lanthanum, zinc, or vanadate. La3+ and Zn2+, in contrast, stimulated the enzyme activity. Unlike Ca2+, Mg2+-ATPase activity, ATP-dependent Ca2+ uptake was negligible in the absence of added Mg2+, indicating that the Ca2+ transport into synaptosomal endoplasmic reticulum may not be a function of the Ca2+-ATPase described. Ca2+-ATPase activity was not stimulated by the monovalent cations Na+ or K+. Ca2+, Mg2+-ATPase demonstrated a substrate preference for ATP and ADP, but not GTP, whereas Ca2+-ATPase hydrolyzed ATP and GTP, and to a lesser extent ADP. The results presented here suggest the high-affinity Mg2+-independent Ca2+-ATPase may be a separate form from Ca2+,Mg2+-ATPase. The capacity of Mg2+-independent Ca2+-ATPase to hydrolyze GTP suggests this protein may be involved in GTP-dependent activities within the cell.  相似文献   

8.
A Ca2(+)-ATPase with a high affinity for free Ca2+ (apparent Km of 0.13 microM) was found and characterized in membrane fractions from porcine aortic and coronary artery smooth muscles in comparison with the plasma membrane Ca2(+)-pump ATPase purified from porcine aorta by calmodulin affinity chromatography. The activity of the high-affinity Ca2(+)-ATPase became enriched in a plasma membrane-enriched fraction, suggesting its localization in the plasma membrane. The enzyme was fully active in the absence of exogenously added Mg2+, but required a minute amount of Mg2+ for its activity as evidenced by the findings that it was fully active in the presence of 0.1 microM free Mg2+ but lost the activity in a reaction mixture containing trans-cyclohexane-1,2-diamine-N,N,N',N'-tetraacetic acid as a divalent cation chelator which has, unlike EGTA, high affinities for both Ca2+ and Mg2+. It was able to utilize a variety of nucleoside di- and triphosphates as substrates, such as ADP, GDP, ATP, GTP, CTP, and UTP, showing a broad substrate specificity. The activity of the enzyme was not modified by calmodulin (5, 10 micrograms/ml). Trifluoperazine, a calmodulin antagonist, had a partial inhibitory effect on the activity at 30 to 240 microM, but this inhibition could not be reproduced by a more specific calmodulin antagonist, W-7, indicating that this inhibition by trifluoperazine was not specific. Furthermore, the high-affinity Ca2(+)-ATPase activity was not modified either by low concentrations (0.5-9 microM) of vanadate or by 1-100 microM p-chloromercuribenzoic acid. Cyclic GMP, nitroglycerin, and nicorandil did not have any effect on the enzyme activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Chemotactic stimulation of Dictyostelium discoideum induces an uptake of Ca2+ by the cells followed by a release of Ca2+. In this study we investigated the mechanism of Ca2+ release and found that it was inhibited by La3+, Cd2+ and azide. Ca2+ release occurred in the absence of external Na+, indicating that an Na+/Ca2+ exchange was not involved. Plasma membranes contained high- and low-affinity ATPase activities. Apparent K0.5 values were 8 microM for the major Mg2+-ATPase and 1.1 microM for the high-affinity Ca2+-ATPase, respectively. The Mg2+-ATPase activity was inhibited by elevated concentrations of Ca2+, whereas both Ca2+-ATPases were active in the absence of added Mg2+. The activities of the Ca2+-ATPases were not modified by calmodulin. The high-affinity Ca2+-ATPase was competitively inhibited by La3+ and Cd2+; we suggest that this high-affinity enzyme mediates the release of Ca2+ from D. discoideum cells.  相似文献   

10.
The Ca2+-stimulated, Mg2+-dependent ATPase of SV40 transformed WI38 lung fibroblast homogenates exhibits a high affinity for Ca2+ (K0.5 = 0.20 microM) and moderately high affinity for ATP (Km = 28.6 microM) and Mg2+ (K0.5 = 138.5 microM). This activity was NaN3, KCN and oligomycin insensitive but very sensitive to vanadate (I50 = 0.5 microM) suggesting its being neither mitochondrial or microsomal but plasma membrane in origin. Under optimal conditions of protein, hydrogen ion and substrate concentration, 16-19 nmoles phosphate was released per min per mg protein. Hill plot analysis indicated no cooperativity to occur between Ca2+ binding sites. Nucleotides other than ATP and dATP were ineffective as substrates. The trivalent cation, lanthanum (La3+) completely inhibited hydrolysis of ATP at approximately 70 microM (I50 = 25 microM). Calmodulin antagonists trifluoperazine and calmidazolium inhibited ATP hydrolysis in a dose dependent fashion.  相似文献   

11.
The high affinity (Ca2+-Mg2+)-ATPase purified from rat liver plasma membrane (Lin, S.-H., and Fain, J. N. (1984) J. Biol. Chem. 259, 3016-3020) has been further characterized. This enzyme also possesses Mg2+-stimulated ATPase activity with K0.5 of 0.16 microM free Mg2+. However, the Vm of the Mg2+-stimulated activity is only half that of the Ca2+-stimulated ATPase activity. The effects of Ca2+ and Mg2+ on this enzyme are not additive. Both the Ca2+-stimulated ATPase and Mg2+-stimulated ATPase activities have similar affinities for ATP (0.21 mM and 0.13 mM, respectively) and similar substrate specificities (they are able to utilize ATP, GTP, UTP, CTP, ADP, and GDP as substrates); both activities are not inhibited by vanadate, p-chloromercuribenzoate, ouabain, dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, oligomycin, F-, N-ethylmaleimide, La3+, and oxidized glutathione. These properties of the Mg2+- and Ca2+-ATPases indicate that both activities reside on the same protein. A comparison of the properties of this high affinity (Ca2+-Mg2+)-ATPase with those of the liver plasma membrane ATP-dependent Ca2+ transport activity reconstituted into artificial liposomes (Lin, S.-H. (1985) J. Biol. Chem. 260, 7850-7856) suggests that this high affinity (Ca2+-Mg2+)-ATPase is not the biochemical expression of the liver plasma membrane Ca2+ pump. The function of this high affinity (Ca2+-Mg2+)-ATPase remains unknown.  相似文献   

12.
Trifluoperazine dihydrochloride-induced inhibition of calmodulin-activated Ca2+ -ATPase and calmodulin-insensitive (Na+ +K+)- and Mg2+ -ATPase activities of rat and human red cell lysates and their isolated membranes was studied. Trifluoperazine inhibited both calmodulin-sensitive and calmodulin-insensitive ATPase activities in these systems. The concentration of trifluoperazine required to produce 50% inhibition of calmodulin-sensitive Ca2+ -ATPase was found to be slightly lower than that required to produce the same level of inhibition of other ATPase activities. Drug concentrations which inhibited calmodulin-sensitive ATPase completely, produced significant reduction in calmodulin-insensitive ATPases as well. The data presented in this report suggest that trifluoperazine is slightly selective towards calmodulin-sensitive Ca2+ -ATPase but that it is also capable of inhibiting calmodulin-insensitive (Na+ +K+)-ATPase and Mg2+ -ATPase activities of red cells at relatively low concentrations. Thus the action of the drug is not due entirely to its interaction with calmodulin-mediated processes, and trifluoperazine cannot be assumed to be a selective inhibitor of calmodulin interactions under all circumstances.  相似文献   

13.
A Ca(2+)-ATPase with an apparent Km for free Ca2+ = 0.23 microM and Vmax = 44 nmol Pi/mg/min was detected in a rat parotid plasma membrane-enriched fraction. This Ca(2+)-ATPase could be stimulated without added Mg2+. However, the enzyme may require submicromolar concentrations of Mg2+ for its activation in the presence of Ca2+. On the other hand, Mg2+ could substitute for Ca2+. The lack of a requirement for added Mg2+ distinguished this Ca(2+)-ATPase from the Ca(2+)-transporter ATPase in the plasma membranes and the mitochondrial Ca(2+)-ATPase. The enzyme was not inhibited by several ATPase inhibitors and was not stimulated by calmodulin. An antibody which was raised against the rat liver plasma membrane ecto-ATPase, was able to deplete this Ca(2+)-ATPase activity from detergent solubilized rat parotid plasma membranes, in an antibody concentration-dependent manner. Immunoblotting analysis of the pellet with the ecto-ATPase antibody revealed the presence of a 100,000 molecular weight protein band, in agreement with the reported ecto-ATPase relative molecular mass. These data demonstrate the presence of a Ca(2+)-ATPase, with high affinity for Ca2+, in the rat parotid gland plasma membranes. It is distinct from the Ca(2+)-transporter, and immunologically indistinguishable from the plasma membrane ecto-ATPase.  相似文献   

14.
Calcium-Stimulated Adenosine Triphosphatases in Synaptic Membranes   总被引:14,自引:12,他引:2  
We have investigated the properties of several ATPases present in synaptic membrane preparations from the cerebral cortex of rat. In addition to the intrinsic (Na+ + K+)-ATPase and a low level of contaminating Mg2+-ATPase of mitochondrial origin, both of which could be controlled by the addition of ouabain and azide, respectively, four activities were studied: (1) a Mg2+-ATPase; (2) a Mg2+-independent activity requiring Ca2+ ions at high concentrations; (3) a (Ca2+ + Mg2+)-ATPase with a high affinity for Ca2+, which were enhanced further (4) by the inclusion of calmodulin (33 nM for half-maximal activity). In the presence of 0.5 mM-EGTA in the buffer used, half saturation for these respective metal ions was observed at 0.9 mM for (1), 1.0 mM for (2), and approximately 0.3 mM for (3) and (4); the latter values correspond to concentrations of free Ca2+ of 0.38 and 0.18 microM for (3) and (4), respectively. The level of activities observed, all in nmol X min-1 X mg-1, under optimal conditions of 37 degrees C, was in a number of preparations (n in parenthesis): for (1) 446 +/- 19 (19); for (2) 362 +/- 18 (3) for (3) 87 +/- 13 (12); and for (4) 161 +/- 29 (12). The (Ca2+ + Mg2+)-ATPase, both in the presence and absence of calmodulin, could be inhibited specifically by a number of agents (approximate I0.5 in parentheses) which, at these concentrations, showed little or no potency against the other activities; among them were vanadate (less than or equal to 10 microM), La3+ (75 microM), trifluoperazine, and other phenothiazines (50 microM). These properties suggest that the (Ca2+ + Mg2+)-ATPase described may be responsible for calcium transport across one (or more) of the several membranes present in nerve endings and contained in the preparation used.  相似文献   

15.
Purified (Na+ + K+)-ATPase from pig kidney was attached to black lipid membranes and ATP-induced electric currents were measured as described previously by Fendler et al. ((1985) EMBO J. 4, 3079-3085). An ATP concentration jump was produced by an ultraviolet-light flash converting non-hydrolysable caged ATP to ATP. In the presence of Na+ and Mg2+ this resulted in a transient current signal. The pump current was not only ATP dependent, but also was influenced by the ATP/caged ATP ratio. It was concluded that caged ATP binds to the enzyme (and hence inhibits the signal) with a Ki of approx. 30 microM, which was confirmed by enzymatic activity studies. An ATP affinity of approx. 2 microM was determined. The addition of the protonophore 1799 and the Me+/H+ exchanger monensin made the bilayer conductive leading to a stationary pump current. The stationary current was strongly increased by the addition of K+ with a K0.5 of 700 microM. Even in the absence of K+ a stationary current could be measured, which showed two Na+-affinities: a high-affinity (K0.5 less than or equal to 1 mM) and a low-affinity (K0.5 greater than or equal to 0.2 M). In order to explain the sustained electrogenic Na+ transport during the Na+-ATPase activity, it is proposed, that Na+ can replace K+ in dephosphorylating the enzyme, but binds about 1000-times weaker than K+. The ATP requirement of the Na+-ATPase was the same (K0.5 = 2 microM) with regard to the peak currents and the stationary currents. However, for the (Na+ + K+)-ATPase the stationary currents required more ATP. The results are discussed on the basis of the Albers-Post scheme.  相似文献   

16.
Purified perigranular and plasma membranes isolated from rat peritoneal mast cells were examined for Ca2+- and Mg2+-dependent ATPase activity. Isolated perigranular membranes contained only a low-affinity Ca2+- or Mg2+-dependent ATPase (Km greater than 0.5 mM). The plasma membranes contained both a low-affinity Ca2+- or Mg2+-dependent ATPase (Km = 0.4 mM, Vmax. = 20 nmol of Pi/min per mg), as well as a high-affinity Ca2+- and Mg2+-dependent ATPase (Km = 0.2 microM, Vmax. = 6 nmol of Pi/min per mg).  相似文献   

17.
Studies were made on the direct effect of platelet-derived growth factor (PDGF) on the high-affinity (Ca2+ +Mg2+)-ATPase, a membrane bound Ca2+-extrusion pump enzyme of the basolateral membranes (BLM) of canine kidney (Km for free Ca2+ = 1.0 x 10(-7) M, Vmax = 180 nmol Pi/mg/min). At 1 x 10(-7) M free Ca2+, PDGF (10(-10)-10(-8) M) stimulated the enzyme activity significantly. Addition of 5 - 200 microM suramin, a compound that blocks binding of PDGF to its receptors on cell membranes, inhibited the stimulatory effect of PDGF dose-dependently (IC50 = 40 microM). A high affinity specific receptor for PDGF (Kd = 4.4 x 10(-10) M, Bmax = 460 fmol/mg protein) was detected on BLM preparations by radioreceptor assay with 125I-PDGF and unlabelled PDGF. Suramin (10-1000 microM) also inhibited the binding of PDGF to BLM preparations dose-dependently. From these results, it is proposed that PDGF stimulates (Ca2+ +Mg2+)-ATPase activity of kidney BLM preparations by enhancing its affinity for free Ca2+ through a specific receptor.  相似文献   

18.
1. The disulfide of thioinosine triphosphate, (SnoPPP)2, is a substrate of the Ca2+-pump and the Ca2+-ATPase of sarcoplasmic reticulum (Km = 400 microM). 2. Inactivation of Ca2+-ATPase by the beta,gamma-methylene diphosphonate analogue of the disulfide of thioinosine triphosphate, (SnoPP[CH2]P)2, in the presence of (Ca2+ + Mg2+ + K+) is preceeded by a dissociable enzyme inhibitor complex with a dissociation constant of 130 microM for a low-affinity binding site. ATP protected Ca2+-ATPase against the inactivation under these conditions with a dissociation constant of 140 microM. 3. Kinetic analysis of the inactivations of Ca2+-ATPase by (SnoPP[CH2]P)2 in the absence of Ca2+ and Mg2+ but the presence of K+ and EGTA led to the appearance of two nucleotide binding sites with two different inactivation velocities. Inactivation rate constants k2 were found for the rapid inactivating part (k2' = 1.44 X 10(-2) s-1) and the slow inactivating part (k2" = 1.15 X 10(-3) s-1). From the protective effect of ATP under these conditions a high-affinity (Kd = 48.78 microM) and a low-affinity ATP binding site (Kd = 114 microM) were apparent. 4. The affinity of the analogues to the enzyme is decreased in the sequence: (SnoPPP)2 > (SnoPP[NH]P)2 > (SnoPP[CH2]P)2 > (SnoP)2. 5. (SnoPPP)2-inactivated Ca2+-ATPase was reactivated by incubation with dithiothreitol. 6. Inactivation of Ca2+-ATPase by [gamma-32P](SnoPPP)2 in the presence of (Mg2+ + K+ + Ca2+) or (EGTA + K+) was accompanied by the incorporation of hydroxylamine-insensitive radioactivity into the acid-precipitable protein. The enzyme-bound [gamma-32P]SnoPPP was cleaved by dithiothreitol. 7. It is concluded that (SnoPPP)2 and its non-hydrolyzable analogues (SnoPP[NH]P)2 and (SnoPP[CH2]P)2 act as ATP affinity labels and form mixed disulfides with a sulfhydryl group within the active site.  相似文献   

19.
Na+-ATPase activity is extremely sensitive to inhibition by vanadate at low Na+ concentrations where Na+ occupies only high-affinity activation sites. Na+ occupies low-affinity activation sites to reverse inhibition of Na+-ATPase and (Na+, K+)-ATPase activities by vanadate. This effect of Na+ is competitive with respect to both vanadate and Mg2+. The apparent affinity of the enzyme for vanadate is markedly increased by K+. The principal effect of K+ may be to displace Na+ from the low-affinity sites at which it activates Na+-ATPase activity.  相似文献   

20.
A Mg-dependent adenosine triphosphatase (ATPase) activated by submicromolar free Ca2+ was identified in detergent-dispersed rat liver plasma membranes after fractionation by concanavalin A-Ultrogel chromatography. Further resolution by DE-52 chromatography resulted in the separation of an activator from the enzyme. The activator, although sensitive to trypsin hydrolysis, was distinct from calmodulin for it was degraded by boiling for 2 min, and its action was not sensitive to trifluoperazine; in addition, calmodulin at concentrations ranging from 0.25 ng-25 micrograms/assay had no effect on enzyme activity. Ca2+ activation followed a cooperative mechanism (nH = 1.4), half-maximal activation occurring at 13 +/- 5 nM free Ca2+. ATP, ITP, GTP, CTP, UPT, and ADP displayed similar affinities for the enzyme; K0.5 for ATP was 21+/- 9 microM. However, the highest hydrolysis rate (20 mumol of Pi/mg of protein/10 min) was observed at 0.25 mM ATP. For all the substrates tested kinetic studies indicated that two interacting catalytic sites were involved. Half-maximal activity of the enzyme required less than 12 microM total Mg2+. This low requirement for Mg2+ of the high affinity (Ca2+-Mg2+)ATPase was probably the major kinetic difference between this activity and the nonspecific (Ca2+ or Mg2+)ATPase. In fact, definition of new assay conditions, i.e. a low ATP concentration (0.25 mM) and the absence of added Mg2+, allowed us to reveal the (Ca2+-Mg2+)ATPase activity in native rat liver plasma membranes. This enzyme belongs to the class of plasma membrane (Ca2+-Mg2+)ATPases dependent on submicromolar free Ca2+ probably responsible for extrusion of intracellular Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号