首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In protein structure prediction, a central problem is defining the structure of a loop connecting 2 secondary structures. This problem frequently occurs in homology modeling, fold recognition, and in several strategies in ab initio structure prediction. In our previous work, we developed a classification database of structural motifs, ArchDB. The database contains 12,665 clustered loops in 451 structural classes with information about phi-psi angles in the loops and 1492 structural subclasses with the relative locations of the bracing secondary structures. Here we evaluate the extent to which sequence information in the loop database can be used to predict loop structure. Two sequence profiles were used, a HMM profile and a PSSM derived from PSI-BLAST. A jack-knife test was made removing homologous loops using SCOP superfamily definition and predicting afterwards against recalculated profiles that only take into account the sequence information. Two scenarios were considered: (1) prediction of structural class with application in comparative modeling and (2) prediction of structural subclass with application in fold recognition and ab initio. For the first scenario, structural class prediction was made directly over loops with X-ray secondary structure assignment, and if we consider the top 20 classes out of 451 possible classes, the best accuracy of prediction is 78.5%. In the second scenario, structural subclass prediction was made over loops using PSI-PRED (Jones, J Mol Biol 1999;292:195-202) secondary structure prediction to define loop boundaries, and if we take into account the top 20 subclasses out of 1492, the best accuracy is 46.7%. Accuracy of loop prediction was also evaluated by means of RMSD calculations.  相似文献   

2.
Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide-bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an autotransporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis.  相似文献   

3.

Background  

Template-target sequence alignment and loop modeling are key components of protein comparative modeling. Short loops can be predicted with high accuracy using structural fragments from other, not necessairly homologous proteins, or by various minimization methods. For longer loops multiscale approaches employing coarse-grained de novo modeling techniques should be more effective.  相似文献   

4.
There has been a rapid increase in the number of available protein sequences derived from gene-sequence information. Computer-based sequence analysis of proteins is gaining in importance as an analytical tool. With the help of these analyses such sequences may be characterized and some insights gained into their probable role in the system. The principles involved in computer-based sequence analysis and some of the methods are discussed.  相似文献   

5.
Sequence effects in single-base loops for quadruplexes   总被引:1,自引:0,他引:1  
Intramolecular G-quadruplexes formed by a single DNA strand have attracted much interest due to the possibility that they may form in telomeres, oncogene promoter sequences and other biologically relevant regions of the genome. Therefore, it is important to understand the rules that govern the formation of these intramolecular structures and to determine their stabilities. We compared here 27 different sequences containing four tracts of three guanines with a medium (3) or relatively long (6-9 bases) central loop and two loops composed of a single nucleotide H (A, T or C) corresponding to the GGGHGGGN3-9GGGHGGG motif. These sequences are similar to sequence motifs that can be found in repeated and promoter sequences. Several conclusions were reached: (i) all sequences are prone to form very stable quadruplexes in potassium (Tm between 55 degrees C and 83 degrees C); (ii) these quadruplexes also form in sodium but with a strongly decreased Tm, with a 21 to 36 degrees C difference in melting temperature between Na+ and K+; (iii) a long (9 bases) central loop had a minimal deleterious impact on the stability of the quadruplex; (iv) pyrimidines are preferred over adenine in both single-base loops; (v) the folding topology is relatively robust in potassium: the CD spectra of all oligonucleotides matched the one of all-parallel stranded reference quadruplexes; (vi) conversely, in sodium the folding is diverse and sequence-dependent, as judged from CD and electrophoresis results.  相似文献   

6.
Wang J  Feng JA 《Proteins》2005,58(3):628-637
Sequence alignment has become one of the essential bioinformatics tools in biomedical research. Existing sequence alignment methods can produce reliable alignments for homologous proteins sharing a high percentage of sequence identity. The performance of these methods deteriorates sharply for the sequence pairs sharing less than 25% sequence identity. We report here a new method, NdPASA, for pairwise sequence alignment. This method employs neighbor-dependent propensities of amino acids as a unique parameter for alignment. The values of neighbor-dependent propensity measure the preference of an amino acid pair adopting a particular secondary structure conformation. NdPASA optimizes alignment by evaluating the likelihood of a residue pair in the query sequence matching against a corresponding residue pair adopting a particular secondary structure in the template sequence. Using superpositions of homologous proteins derived from the PSI-BLAST analysis and the Structural Classification of Proteins (SCOP) classification of a nonredundant Protein Data Bank (PDB) database as a gold standard, we show that NdPASA has improved pairwise alignment. Statistical analyses of the performance of NdPASA indicate that the introduction of sequence patterns of secondary structure derived from neighbor-dependent sequence analysis clearly improves alignment performance for sequence pairs sharing less than 20% sequence identity. For sequence pairs sharing 13-21% sequence identity, NdPASA improves the accuracy of alignment over the conventional global alignment (GA) algorithm using the BLOSUM62 by an average of 8.6%. NdPASA is most effective for aligning query sequences with template sequences whose structure is known. NdPASA can be accessed online at http://astro.temple.edu/feng/Servers/BioinformaticServers.htm.  相似文献   

7.
8.
The crystal structures of a number of globular proteins are currently available. An analysis of the distribution of side-chains among different allowed conformations in these proteins has been carried out. The observed conformations of individual residues are discussed on the basis of well-known stereochemical criteria. The population distribution of side-chains in different allowed regions in conformational space can be explained largely on the basis of simple steric considerations. In addition to examining the conformational behaviour of individual residues, some population distributions of conformational angles of general interest involving groups of residues have also been analyzed.  相似文献   

9.
A reinvestigation of the isothiocyanate-based chemistry for cyclic degradations of peptides and proteins revealed that the reagent trimethylsilylisothiocyanate (TMS-ITC) gives superior results in terms of coupling efficiency and lack of complicating side reactions. Acetic anhydride (10 min at various temperatures) was used to activate the carboxyl terminus, and 6 N HCl (30 min at room temperature) was used for cleavage as originally described by G.R. Stark (Biochemistry 8, 4735, 1968). Reaction conditions for efficient coupling were explored using subtractive chemistry on bradykinin, a nonapeptide, and separation of the reaction products by reverse-phase high-performance liquid chromatography. The products were analyzed by fast atom bombardment-mass spectrometry and shown to be the N-acetylated starting material and the N-acetylated des-Arg9 derivative of bradykinin. The pseudo-first-order rate constants measured at 50, 70, and 90 degrees C were 5.6 X 10(-5), 5.1 X 10(-4), and 8.6 X 10(-4) s-1, respectively. In order to obtain complete couplings within 30-40 min at 50 degrees C, the effect of pyridine catalysis was studied. The addition of 0.225 M pyridine resulted in roughly doubling the rates at 50 and 70 degrees C. In the case of bradykinin, the reaction with TMS-ITC in the presence of the pyridine catalyst at 50 degrees C was complete in 15 min. In order to apply this methodology to the analysis of proteins, the thiohydantoin derivatives of amino acids were synthesized and separated by reverse-phase HPLC. The derivatives were also characterized by mass spectrometry. The above reaction conditions were tested on 3 nmol of sperm whale apomyoglobin for three cycles of degradation. The sample was first coupled to p-phenylene diisothiocyanate-derivatized aminopropyl glass with a 90% yield. The approximate initial yield of glycine at cycle one was 30%. The first three cycles corresponded exactly to the predicted carboxy-terminal sequence of myoglobin. These results demonstrate the feasibility of a new Stark reagent for automated carboxy-terminal chemistry.  相似文献   

10.
11.
Sequential specification of conformation in proteins and polypeptides is a triangular interplay involving the system of linked peptides, the sequences in side chains, and water as solvent. Stereochemistry in side chain linkages is obviously important in the interaction between all of the players, but no specification of its explicit role, if any, in linking sequence with conformation has been made. Flory and coworkers made a puzzling observation in 1967 that, when mutated from poly-L to alternating-L,D stereochemical structure, polypeptides will suffer a reduction in overall dimension or characteristic ratio by an astonishing factor of 10 and to a value even lower than that predicted for free rotation (Miller, W. G.; Brant, D. A.; Flory, P. J. J Mol Biol 1967, 23, 67-80). Enquiring into this longstanding puzzle, Durani and coworkers found that the stereochemical modification will also abolish conformational sensitivity in polypeptide structure to solvent, because electrostatic interactions in the system of linked peptides are transformed from a condition of mutual conflict to one of harmony (Ramakrishnan, V.; Ranbhor, R.; Kumar, A.; Durani, S. J Phys Chem B 2006, 110, 9314-9323). Thus, poly-L stereochemistry could be the fulcrum linking sequences with phi,psis in protein and polypeptide structures, via dielectric arbitrations in a conflicting type of interpeptide electrostatics, in agreement with the electrostatic screening model of Avbelj and Moult (Avbelj, F.; Moult, J. Biochemistry 1995, 34, 755-764).  相似文献   

12.
1. The effect exerted by a residue on the conformation of neighbouring residues was analysed by using data from nine globular proteins of known sequence and conformation. 2. An information measure was used which estimated the role of a residue in influencing neighbouring conformations and also its tendency to influence the lengths of runs of residues in that conformation. This measure was estimated for each residue in all conformations defined by domains on the varphi, psi diagram. 3. Plots of the information measure yielded an intercept, which was a measure of intra-residue information for a residue. The slope was a measure of the statistical co-operativity or tendency of the residue to influence the occurrence of its neighbours in runs of a particular conformation. Both parameters are a function of the residue type. Statistical co-operativity is found in the alpha(1)-helical (H(1)) and beta-pleated-sheet (P(2)) conformations and, to a lesser extent, in their distorted variants H(2) and P(1). 4. The directional nature of these influences for H(1) and P(2) conformations is illustrated by plots of the information measure against the distance m from the residue, for m=-10 to +10. 5. The results for statistical co-operativity are discussed in relation to theories of helix-coil and pleated-sheet-coil transitions. The value of the information-theory-derived parameters in obtaining s parameters for the Zimm & Bragg (1959) equations is illustrated. 6. Directional effects are discussed with particular relation to mechanisms of the termination of helices and the involvement of the alpha(II) conformation and also to discontinuities in pleated-sheet conformations.  相似文献   

13.
Ordination is a powerful method for analysing complex data setsbut has been largely ignored in sequence analysis. This papershows how to use principal coordinates analysis to find low–dimensionalrepresentations of distance matrices derived from aligned setsof sequences. The method takes a matrix of Euclidean distancesbetween all pairs of sequence and finds a coordinate space wherethe distances are exactly preserved The main problem is to finda measure of distance between aligned sequences that is Euclidean.The simplest distance function is the square root of the percentagedifference (as measured by identities) between two sequences,where one ignores any positions in the alignment where thereis a gap in any sequence. If one does not ignore positions witha gap, the distances cannot be guaranteed to be Euclidean butthe deleterious effects are trivial. Two examples of using themethod are shown. A set of 226 aligned globins were analysedand the resulting ordination very successfully represents theknown patterns of relationship between the sequences. In theother example, a set of 610 aligned 5S rRNA sequences were analysed.Sequence ordinations complement phylogenetic analyses. Theyshould not be viewed as a complete alternative.  相似文献   

14.
The i + 5-->i hydrogen bonded turn conformation (pi-turn) with the fifth residue adopting alpha L conformation is frequently found at the C-terminus of helices in proteins and hence is speculated to be a "helix termination signal." An analysis of the occurrence of i + 5-->i hydrogen bonded turn conformation at any general position in proteins (not specifically at the helix C-terminus), using coordinates of 228 protein crystal structures determined by X-ray crystallography to better than 2.5 A resolution is reported in this paper. Of 486 detected pi-turn conformations, 367 have the (i + 4)th residue in alpha L conformation, generally occurring at the C-terminus of alpha-helices, consistent with previous observations. However, a significant number (111) of pi-turn conformations occur with (i + 4)th residue in alpha R conformation also, generally occurring in alpha-helices as distortions either at the terminii or at the middle, a novel finding. These two sets of pi-turn conformations are referred to by the names pi alpha L and pi alpha R-turns, respectively, depending upon whether the (i + 4)th residue adopts alpha L or alpha R conformations. Four pi-turns, named pi alpha L'-turns, were noticed to be mirror images of pi alpha L-turns, and four more pi-turns, which have the (i + 4)th residue in beta conformation and denoted as pi beta-turns, occur as a part of hairpin bend connecting twisted beta-strands. Consecutive pi-turns occur, but only with pi alpha R-turns. The preference for amino acid residues is different in pi alpha L and pi alpha R-turns. However, both show a preference for Pro after the C-termini. Hydrophilic residues are preferred at positions i + 1, i + 2, and i + 3 of pi alpha L-turns, whereas positions i and i + 5 prefer hydrophobic residues. Residue i + 4 in pi alpha L-turns is mainly Gly and less often Asn. Although pi alpha R-turns generally occur as distortions in helices, their amino acid preference is different from that of helices. Poor helix formers, such as His, Tyr, and Asn, also were found to be preferred for pi alpha R-turns, whereas good helix former Ala is not preferred. pi-Turns in peptides provide a picture of the pi-turn at atomic resolution. Only nine peptide-based pi-turns are reported so far, and all of them belong to pi alpha L-turn type with an achiral residue in position i + 4. The results are of importance for structure prediction, modeling, and de novo design of proteins.  相似文献   

15.
16.
17.
Wu Y  He Y  Moya IA  Qian X  Luo Y 《Molecular cell》2004,15(3):423-435
Homologous recombination of DNA plays crucial roles in repairing severe DNA damage and in generating genetic diversity. The process is facilitated by a superfamily of recombinases: bacterial RecA, archaeal RadA and Rad51, and eukaryal Rad51 and DMC1. These recombinases share a common ATP-dependent filamentous quaternary structure for binding DNA and facilitating strand exchange. We have determined the crystal structure of Methanococcus voltae RadA in complex with the ATP analog AMP-PNP at 2.0 A resolution. The RadA filament is a 106.7 A pitch helix with six subunits per turn. The DNA binding loops L1 and L2 are located in close proximity to the filament axis. The ATP analog is buried between two RadA subunits, a feature similar to that of the active filament of Escherichia coli RecA revealed by electron microscopy. The disposition of the N-terminal domain suggests a role of the Helix-hairpin-Helix motif in binding double-stranded DNA.  相似文献   

18.
19.
Voltage-sensitive cation-selective ion channels of the voltage-gated ion channel (VGC) superfamily were examined by a combination of sequence alignment and phylogenetic tree construction procedures. Segments of the alpha-subunits of K+-selective channels homologous to the structurally elucidated KcsA channel of Streptomyces lividans were multiply aligned, and this alignment provided the database for computer-assisted structural analyses and phylogenetic tree construction. Similar analyses were conducted with the four homologous repeats of the alpha-subunits from representative Ca2+- and Na+-selective channels, as well as with the ensemble of K+, Ca2+ and Na+ channels. In both the single subunit of the K+ channels and the individual repeats of the Ca2+ and Na+ channels, the analyses suggest the occurrence of at least two tandemly arranged modules corresponding to the predicted voltage-sensor domain and the pore domain. The phylogenetic analyses reveal strict clustering of segments according to cation-selectivity and repeat unit. We surmise that the pore module of the prokaryotic K+ channel was the primordial polypeptide upon which other modules were superimposed during evolution in order to generate phenotypic diversity. These observations may prove applicable to all members of the VGC family yet to be discovered throughout the prokaryotic and eukaryotic kingdoms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号