首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 837 毫秒
1.
Alpha-adrenergic receptors may play an important role in regulating vascular tone and reactivity. To study alpha-adrenergic receptors in blood vessels, we have developed a method to characterize and quantitate alpha-adrenergic receptors in a particulate fraction of individual rabbit aortas using the high specific activity alpha antagonist [125I] BE2254. [125I] BE2254 specifically labels a single class of binding sites with a dissociation constant of 286 pM and a maximal binding capacity of 16.7 fmoles/mg protein. Catecholamines compete for [125I] BE2254 binding stereospecifically and with the characteristic alpha-adrenergic potency series of (-)epinephrine greater than or equal to (-)norepinephrine much greater than (-)isoproterenol. The alpha 1-selective antagonist prazosin (KD = 0.7 nM) is much more potent in competing for [125I] BE2254 binding than is the alpha 2-selective antagonist yohimbine (KD = 1000 nM), which suggests that the alpha adrenergic receptor identified is predominantly of the alpha 1 subtype. Also, the dissociation constants from these binding studies were in good agreement with those reported in rabbit aorta from classical pharmacological experiments where contraction was found to be mediated via alpha 1 receptors. This extension of radioligand binding techniques to individual rabbit aortas should simplify the study of vascular alpha adrenergic receptor regulation, and provide a basis for broadening the understanding of vascular alpha adrenergic receptors.  相似文献   

2.
[3H]Dihydroergocryptine ([3H]DHE) was shown to bind to sites in membranes from neuroblastoma X glioma hybrid cells (NG 108-15) that had the characteristics expected of alpha-adrenergic receptors. The binding was saturable with 0.3 pmol [3H]DHE bound per mg of protein and of high affinity, with an apparent dissociation constant (KD) of 1.8 nM. The specificity of the binding site for various ligands was more similar to that of alpha 2 receptors than to that of alpha 1. No specific binding of [3H]WB-4101 was found in the membranes derived from NG 108 cells. This finding also indicated that the [3H]DHE binding site in the cell is the alpha 2 receptor. GTP lowered the affinity of agonists for the [3H]DHE binding site, although the nucleotide hardly affected the affinity of antagonists including [3H]DHE.  相似文献   

3.
Examination of the binding characteristics of the adenosine agonist radioligands [3H]N6-cyclohexyladenosine [( 3H]CHA), [3H]cyclopentyladenosine [( 3H]CPA), and [3H]5'-N-ethylcarboxamido adenosine [( 3H]NECA) to membranes prepared from PC12 cells showed that the A-1-selective ligands (CHA and CPA) had minimal binding, which was not amenable to analysis using curve-fitting programs. However, [3H]NECA, a nonselective A-1/A-2 agonist, gave reproducible binding, which was enhanced by removal of endogenous adenosine, using the catabolic enzyme adenosine deaminase. This binding was of high affinity (KD = 4.7 nM) with limited capacity (263 fmol/mg of protein). Specific binding of [3H]NECA was unaffected by the presence of either CPA (50 nM) or MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM), a finding suggesting involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. Binding of [3H]NECA to PC12 cell membranes was stereo-selective, with the R isomer of N6-phenylisopropyladenosine (PIA) being approximately 12 times more active than S-PIA. The A-1-selective agonist CPA was a weak inhibitor of [3H]NECA binding (Ki = 251 nM). The rank order of activity of adenosine agonists in displacing specific [3H]NECA binding was NECA greater than or equal to 2-chloroadenosine greater than CHA greater than or equal to 5'-N-methylcarboxamido adenosine greater than or equal to R-PIA greater than CPA greater than S-PIA. Binding was also displaced by the marine adenosine agonist 1-methylisoguanosine and by a series of xanthine antagonists with the activity order being 1,3-dipropyl-8-(2-amino-4-chloro)phenylxanthine greater than 8-phenyltheophylline greater than 8-p-sulfophenyltheophylline.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
[3H]yohimbine, a potent and selective alpha 2-adrenergic antagonist was used to label alpha-adrenoceptors in intact human lymphocytes. Binding of [3H]yohimbine was rapid (t1/2 1.5 -2.0 min) and readily reversed by 10 microM phentolamine (t1/2 = 5 - 6 min) and of high affinity (Kd = 3.7 +/- 0.86 nM). At saturation, the total number of binding sites was 19.9 +/- 5.3 fmol/10(7) lymphocytes. Adrenergic agonists competed for [3H]yohimbine binding sites with an order of potency: clonidine greater than (-) epinephrine greater than (-) norepinephrine greater than (+) epinephrine much greater than (-) isoproterenol; adrenergic antagonists with a potency order of yohimbine greater than phentolamine greater than prazosin. These results indicate the presence of alpha 2-adrenoceptors in human lymphocytes.  相似文献   

5.
The subcellular distribution of specific binding sites for [3H]leukotriene C4 ([3H]LTC4) was analyzed after sedimentation of organelles from disrupted bovine aortic endothelial cells on sucrose density gradients and was shown to be in membrane fractions I (20% sucrose) and IV (35% sucrose). Saturation binding studies of [3H]LTC4 on endothelial cell monolayers at 4 degrees C demonstrated high-affinity binding sites with a dissociation constant (Kd) of 6.8 +/- 2.2 nM (mean +/- SD) and a density of 0.12 +/- 0.02 pmol/10(6) cells. At 4 degrees C, the specific binding of [3H]LTC4 by each of the subcellular fractions reached equilibrium at 30 min and remained stable for an additional 60 min. After 30 min of incubation with [3H]LTC4, the addition of excess unlabeled LTC4 to each subcellular fraction reversed more than 70% of [3H]LTC4 binding in 10 min. The [3H]LTC4 binding activities of subcellular fractions were enhanced approximately twofold to fourfold in the presence of Ca2+, Mg2+, and Mn2+, whereas Na+, K+, and Li+ were without effect. As measured by saturation experiments, the Kd and density of LTC4 binding sites in fraction I were 4.8 +/- 1.6 nM and 16.5 +/- 1.9 pmol/mg of protein, respectively, and in fraction IV were 4.7 +/- 1.5 nM and 81.4 +/- 19 pmol/mg of protein, respectively. Inhibition of [3H]LTC4 binding in membrane-enriched subcellular fractions I and IV by LTC4 occurred with molar inhibition constant (Ki) values of 4.5 +/- 0.1 nM and 4.7 +/- 1.2 nM, respectively, whereas Ki values for LTD4 were 570 +/- 330 nM and 62.5 +/- 32.8 nM, respectively, and for LTE4 were greater than 1000 nM for each fraction; LTB4 and reduced glutathione were even less active. FPL55712, a putative antagonist of the sulfidopeptide LT components of slow reacting substance of anaphylaxis, had Ki values of 1520 +/- 800 nM and 1180 +/- 720 nM for [3H]LTC4 binding sites on membrane-enriched subcellular fractions I and IV, respectively. Thus as defined by Kd, Ki, and specificity, the LTC4 binding units that are distributed to the plasma membrane and the binding units in the subcellular fraction of greater density were similar to each other. Pretreatment of the isolated subcellular membrane fractions with trypsin abolished [3H]LTC4 binding by fraction I, enriched for the plasma membrane marker 5' nucleotidase, and that by fraction IV, enriched for the mitochondrial membrane marker succinate-cytochrome C reductase.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Saturation experiments with the muscarinic antagonist [3H]N-methylscopolamine ([3H]NMS) indicated that cerebellar granule cells in primary culture possess a high density of muscarinic acetylcholine receptors (mAChRs): Bmax = 1.85 +/- 0.01 pmol/mg of protein at 10 days in culture; KD = 0.128 +/- 0.01 nM. The selective M1 antagonist pirenzepine displaced [3H]NMS binding with a low affinity (Ki = 273 +/- 13 nM), whereas the M2/M3 muscarinic antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide competed with [3H]NMS with Ki values in the nanomolar range, a result suggesting that some of the mAChRs on cerebellar granule cells belong to the M3 subtype. Methoctramine, which discriminates between M2 and M3 subtypes with high and low affinity, respectively, displayed a high and low affinity for [3H]NMS binding sites (Ki(H) = 31 +/- 5 nM; Ki(L) = 2,620 +/- 320 nM). These results provide the first demonstration that both M2 and M3 mAChR subtypes may be present on cultured cerebellar cells. In addition, complete death of neurons induced by N-methyl-D-aspartate (100 microM for 1 h) reduced by 85% the specific binding of [3H]NMS, a result indicating that most mAChRs were associated with neuronal components. Finally, the evolution of the density of mAChRs, labeled by [3H]NMS, correlated with the neuronal maturation during the in vitro development of these cells.  相似文献   

7.
The beta-adrenergic receptors of isolated human fat cells were identified using a new hydrophilic beta-adrenergic radioligand (+/-)[3H]CGP-12177. The results were compared with those from [3H]dihydroalprenolol binding to fat cells and membranes. [3H]CGP-12177 binding to isolated fat cells showed lower nonspecific binding (less than 15% of total binding) than the lipophilic [3H]dihydroalprenolol (40-60%) at 3 times the KD. At 37 degrees C, [3H]CGP-12177 binding was rapid, reversible, of high affinity (1.2 +/- 0.3 nM) and saturable. The total number of binding sites per cell in subcutaneous adipocytes was 25,000 +/- 6,000 and was equivalent to that found using membrane fractions. Displacement of [3H]CGP-12177 bound to adipocytes by propranolol was stereoselective, consistent with competition at a single site, and had the same characteristics as in membranes. The displacement curves of the beta 1-selective antagonists (atenolol and betaxolol) were biphasic, the high affinity displacement accounting for 70% of the total binding sites. Beta-adrenergic agonists also competed with [3H]CGP-12177 binding in the order of potency: (-) isoproterenol greater than (-) norepinephrine greater than (-) epinephrine, similar to that found in membranes and in in vitro studies on the lipolytic activity of isolated fat cells. This study demonstrates that the sites specifically labeled by [3H]CGP-12177 are the physiological beta-adrenoceptors and also shows that the ligand is better than [3H]dihydroalprenolol for the accurate identification of these receptors in intact human adipocytes. The methodology, which requires biopsies of less than 1 gram of adipose tissue, can be of potential interest for clinical studies investigating the status of fat cell beta-adrenoceptors in various pathophysiological situations.  相似文献   

8.
Drug-induced refractoriness of alpha-adrenergic receptor-mediated vasoconstriction may be a clinically important phenomenon. We have investigated the possible molecular mechanisms underlying this phenomenon in cultured vascular smooth muscle cells derived from the rabbit aorta. alpha 1-Adrenergic receptors were identified in membranes prepared from these cells by [125I]HEAT binding. The radioligand bound to a high affinity site (Kd = 140 pM) in a saturable fashion (202 fmol/mg protein). Adrenergic agonists and antagonists competed for binding of [125I]HEAT with the expected order of potency for an alpha 1-receptor, (-)epinephrine greater than or equal to (-) norepinephrine greater than (+)epinephrine greater than isoproterenol and prazosin greater than phentolamine greater than yohimbine. Exposure of cells for 26 hours to 10 microM norepinephrine resulted in a 70% decrease in the number of alpha 1-receptors as measured by [125I]HEAT binding without any significant change in the affinity of the receptor for the ligand. When the alpha-receptors were blocked with 10 microM phentolamine the loss of receptors induced by norepinephrine was completely prevented. Similar down-regulation of the [125I]HEAT binding sites was observed when the alpha 1-agonist phenylephrine was used instead of norepinephrine. It is concluded that alpha-agonists induce down-regulation of aortic smooth muscle alpha 1-receptors. This reduction of alpha-receptors could be important in the mechanisms by which vascular smooth muscle develops refractoriness to alpha-adrenergic stimulation.  相似文献   

9.
Adrenergic control of human fat cell lipolysis is mediated by two kinds of receptor sites that are simultaneously stimulated by physiological amines. To establish a correlation between the binding characteristics of the receptor and biological functions, the ability of physiological amines to stimulate or inhibit isolated fat cell lipolysis in vitro was compared to the beta- and alpha 2-adrenoceptor properties of the same fat cell batch. The beta-selective antagonist (-)[3H]dihydroalprenolol ([3H]DHA) and the alpha 2-selective antagonists [3H]yohimbine ([3H]YOH) and [3H]rauwolscine ([3H]RAU) were used to identify and characterize the two receptor sites. Binding of each ligand was rapid, saturable, and specific. The results demonstrate 1) the weaker lipolytic effect of epinephrine compared with norepinephrine. This can be explained by the equipotency of the amines at the beta 1-sites and the higher affinity of epinephrine for alpha 2-adrenergic receptors. 2) The preponderance of alpha 2-adrenergic receptor sites labeled by [3H]YOH (Bmax, 586 +/- 95 fmol/mg protein; KD, 2.7 +/- 0.2 nM) or [3H]RAU (Bmax, 580 +/- 100 fmol/mg protein; KD, 3.7 +/- 0.1 nM). These two ligands can be successfully used to label alpha 2-adrenergic receptor sites. 3) The beta 1-adrenergic receptor population labeled by [3H]DHA(Bmax, 234 +/- 37 fmol/mg protein; KD, 1.8 +/- 0.4 nM), although a third as numerous as the alpha 2-adrenergic population, is responsible for the lipolytic effect of physiological amines and is weakly counteracted by simultaneous alpha 2-adrenergic receptor stimulation under our experimental conditions. It is concluded that, in human fat cells, the characterization of beta 1- and alpha 2-adrenergic receptors by saturation studies or kinetic analysis to determine affinity (KD) and maximal number of binding sites (Bmax) is not sufficient for an accurate characterization of the functional adrenergic receptors involved in the observed biological effect.  相似文献   

10.
We studied the characteristics of the leukotriene (LT) C4 and D4 receptors on a cultured smooth muscle cell line, BC3H-1. Specific [3H]LTC4 binding to the cell membrane was greater than 80% of total binding and saturable at a density of 3.96 +/- 0.39 pmol/mg protein, with an apparent dissociation constant (Kd) of 14.3 +/- 2.0 nM (n = 9). The association and dissociation of [3H]LTC4 binding were rapid and apparent equilibrium conditions were established within 5 min. Calculated Kd value of [3H]LTC4 binding from the kinetic analysis was 9.9 nM. From the competition analysis, calculated Ki value of unlabeled LTC4 to compete for the specific binding of [3H]LTC4 was 9.2 nM and was in good agreement with the Kd value obtained from the Scatchard plots or kinetic analysis. The rank order of potency of the unlabeled competitors for competing specific [3H]LTC4 binding was LTC4 much greater than LTD4 greater than LTE4 greater than FPL-55712. The maximum number of binding sites (Bmax) of [3H]LTD4 in the membrane of BC3H-1 cell line was about 11 times lower than that of the [3H]LTC4. The calculated values of Kd and Bmax of [3H]LTD4 binding were 9.3 +/- 0.8 nM and 0.37 +/- 0.04 pmol/mg protein, respectively (n = 3). The rank order of potency or the unlabeled competitors for competing specific [3H]LTD4 binding was LTD4 = LTE4 greater than FPL-55712 much greater than LTC4. These findings demonstrate that BC3H-1 cell line possess both LTC4 and LTD4 receptors with a predominance of LTC4 receptors. Thus BC3H-1 cell line is a good model to study the regulation of LTC4 and LTD4 receptors.  相似文献   

11.
The possible role of immunomodulatory peptide somatostatin (SRIF) in measles virus (MV)-induced immunopathology was addressed by analysis of SRIF receptors and their coupling to adenylyl cyclase in mitogen-stimulated Jurkat T cells and human peripheral blood mononuclear cells (PBMC). SRIF-specific receptors were assayed in semipurified membrane preparations by using SRIF14 containing iodinated tyrosine at the first position in the amino acid chain ([125I]Tyr1) as a radioligand. A determination of receptor number by saturation of radioligand binding at equilibrium showed that in Jurkat cells, MV infection led to a dramatic decrease in the total receptor number. The virus-associated disappearance of one (Ki2 = 12 +/- 4 nM [mean +/- standard error of the mean [SEM]]; n = 4) of two somatostatin binding sites identified in control Jurkat cells (Ki1 = 78 +/- 3 pM and Ki2 = 12 +/- 4 nM [mean +/- SEM]; n = 4) was also observed. Almost identical results were obtained for phytohemagglutinin-activated human PBMC. In the absence of MV infection, two somatostatin binding sites were present (Ki1 = 111 +/- 31 pM and Ki2 = 17 +/- 2 nM [mean +/- SEM]; n = 2), whereas in MV-infected cells, only the high-affinity (Ki1 = 48 +/- 15 pM [mean +/- SEM]; n = 2) binding site remained. In addition, MV infection reinforced the inhibitory effects of SRIF on adenylyl cyclase activity, since maximal inhibition at 1 microM peptide was 11% +/- 4% in control cells versus 25% +/- 3% (P < 0.05) in infected Jurkat cells. Moreover, MV infection severely impaired the capacity of adenylyl cyclase to be activated directly (by forskolin) or indirectly (via Gs protein-coupled vasoactive intestinal peptide receptor). An assessment of [methyl-3H]thymidine incorporation showed that SRIF increased proliferative responses to mitogens only in control cells, not in MV-infected cells. Altogether, our data emphasize that MV-associated alteration of SRIF transduction appears to be related to the loss of SRIF-dependent increase of mitogen-induced proliferation.  相似文献   

12.
[3H]Yohimbine, a potent alpha 2-adrenergic antagonist, was used to label the alpha-adrenergic receptors in membranes isolated from human platelets. Binding of [3H]yohimbine to platelet membranes appears to have all the characteristics of binding to alpha-adrenergic receptors. Binding reached a steady state in 2-3 min at 37 degrees C and was completely reversible upon the addition of excess phentolamine or yohimbine (both at 10(-5) M; t1/2 = 2.37 min). [3H]Yohimbine bound to a single class of noncooperative sites with a dissociation constant of 1.74 nM. At saturation, the total number of binding sites was calculated to be 191 fmol/mg protein. [3H]Yohimbine binding was stereo-specifically inhibited by epinephrine: the (-) isomer was 11-times more potent that the (+) isomer. Catecholamine agonists competed for the occupancy of the [3H]yohimbine-binding sites with an order of potency: clonidine greater than (-)-epinephrine greater than (-)-norepinephrine much greater than (-)-isoproterenol. The potent alpha-adrenergic antagonist, phentolamine, competed for the sites whereas the beta-antagonist, (+/-)-propranolol, was very weak inhibitor. 0.1 mM GTP reduced the binding affinity of the agonists, while producing no change in antagonist-binding affinity. Dopamine and serotonin competed only at very high concentrations. Similarly, muscarinic cholinergic ligands were also poor inhibitors of [3H]yohimbine binding. These results suggest that [3H]yohimbine binding to hunan platelet membranes is specific, rapid, saturable, reversible and, therefore, can be successfully used to label alpha 2-adrenergic receptors.  相似文献   

13.
Binding properties of naftopidil and alpha 1-adrenoceptor antagonists to alpha-adrenoceptors in prostates from benign prostatic hypertrophy (BPH) were characterized by radioreceptor assays using [3H]prazosin and [3H]rauwolscine. Specific binding of [3H]prazosin and [3H]rauwolscine in human prostatic membranes was saturable and of high affinity, and it showed a pharmacological specificity which characterized alpha 1 and alpha 2-adrenoceptors, respectively. Naftopidil and several alpha 1 antagonists competed for prostatic [3H]prazosin binding in order: R-(-)-YM-12617 greater than prazosin greater than bunazosin greater than terazosin greater than naftopidil greater than urapidil, and the inhibitory effect (Ki = 11.6 nM) of naftopidil was 10 to 45 times less potent than quinazoline derivatives such as prazosin, bunazosin and terazosin. The potencies of these antagonists in competing for [3H]prazosin binding sites in human prostates correlated well with their pharmacological potencies (pA2). Scatchard analysis indicated that the decrease of prostatic [3H]prazosin binding by naftopidil was due to a marked increase in the Kd value without a change in the Bmax value. The inhibition of prostatic [3H]prazosin binding by naftopidil was reversible. Naftopidil also inhibited prostatic [3H]rauwolscine binding (Ki = 70.0 nM). Thus, it is suggested that naftopidil antagonizes alpha 1-adrenoceptors in human prostates in a competitive and reversible manner.  相似文献   

14.
The binding of [3H]diazepam to cell homogenates of embryonic rat brain neurons grown in culture was examined. Under the conditions used to prepare and maintain these neurons, only a single, saturable, high-affinity binding site was observed. The binding of [3H]diazepam was potently inhibited by the CNS-specific benzodiazepine clonazepam (Ki = 0.56 +/- 0.08 nM) but was not affected by the peripheral-type receptor ligand Ro5-4864. The KD for [3H]diazepam bound specifically to cell homogenates was 2.64 +/- 0.24 nM, and the Bmax was 952 +/- 43 fmol/mg of protein. [3H]Diazepam binding to cell membranes washed three times was stimulated dose-dependently by gamma-aminobutyric acid (GABA), reaching 112 +/- 7.5% above control values at 10(-4) M. The rank order for potency of drug binding to the benzodiazepine receptor site in cultured neurons was clonazepam greater than diazepam greater than beta-carboline-3-carboxylate ethyl ester greater than Ro15-1788 greater than CL218,872 much greater than Ro5-4864. The binding characteristics of this site are very similar to those of the Type II benzodiazepine receptors present in rat brain. These data demonstrate that part, if not all, of the benzodiazepine-GABA-chloride ionophore receptor complex is being expressed by cultured embryonic rat brain neurons in the absence of accompanying glial cells and suggest that these cultures may serve as a model system for the study of Type II benzodiazepine receptor function.  相似文献   

15.
Specific binding sites for (3H)-leukotriene D4 (LTD4) were identified on guinea-pig alveolar macrophages (GPAMs) using high specific activity (3H)-LTD4, in the presence or absence of unlabelled LTD4. The time required for (3H)-LTD4 binding to reach equilibrium was approximately 15 min at 0 degrees C. The binding was saturable, reversible and specific. The dissociation constant (Kd) and site density (Bmax) were found to be 2.33 +/- 0.38 nM and 560 +/- 48 fmol/10(6) cells, respectively, as determined from Scatchard analysis. In competition studies for the displacement of (3H)-LTD4 from binding sites, leukotrienes B4, C4, D4 and E4, and the peptidoleukotriene antagonist FPL-55712 revealed an order of potency of LTD4 (Ki 3.9 nM) greater than LTE4 (Ki 243.9 nM) greater than LTC4 (Ki 796.9 nM) greater than FPL-55712 (Ki 17.6 microM). Concentrations of LTB4 up to 10 microM did not displace the (3H)-LTD4 binding. Bioconversion of LTD4 by GPAMs, as determined by Reverse-Phase High-Performance Liquid Chromatography (RP-HPLC), was less than 3% in 30 min incubation periods. It is concluded that these binding sites may be receptors for LTD4 on GPAMs. Since LTD4 is produced by GPAMs, it is postulated that endogenous LTD4 may modulate thromboxane synthesis and lung constriction.  相似文献   

16.
We have examined the binding of the adenosine agonist radioligands [3H]cyclohexyladenosine [( 3H]CHA), R-N6-[3H]phenylisopropyladenosine [( 3H]R-PIA), and 5'-N-ethylcarboxamido[3H]adenosine [( 3H]NECA) to membranes prepared from rat pineal gland. The results showed that the A-1-selective ligands (CHA and R-PIA) had less than or equal to 10% specific binding. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 72% specific binding of the total binding. This specific binding was insensitive to cyclopentyladenosine (50 nM) or R-PIA (50 microM). To characterize this binding, we used the N-ethylmaleimide pretreatment method. Under these conditions, this binding was of high affinity with a KD of 51 +/- 10 nM and an apparent Bmax of 1,060 +/- 239 fmol/mg of protein. Specific binding was unaffected by the presence of MgCl2 (10 mM) but was sensitive to guanylylimidodiphosphate (100 microM) (-25%), a result suggesting the involvement of an N-protein mechanism in the coupling of the adenosine receptor labeled by [3H]NECA to other components of the receptor complex. The rank of activity of adenosine analogues in displacing specific [3H]NECA binding was NECA greater than 2-chloroadenosine greater than S-adenosyl-L-homocysteine greater than CHA. Binding was also displaced by 3-isobutyl-1-methylxanthine (IC50 = 23.6 microM). These findings are consistent with the selective labeling by [3H]NECA of an A-2-type adenosine receptor in rat pineal membranes.  相似文献   

17.
We have generated, by transfection and proper selection, a stable mouse C127 cell line which expresses the human alpha 2-adrenergic receptor gene. The size of the mRNA produced by the cloned gene is 1.8 kb. Electrophoretic analysis and autoradiography of cell membrane proteins photoaffinity labeled with p-[3H]azidoclonidine gave a broad protein band of molecular mass of approx. 64 kDa. Saturation binding with [3H]rauwolscine as ligand gave an equilibrium dissociation constant of 1.29 +/- 0.46 nM (mean +/- S.D.) and binding capacity range of 18-35 pmol/mg membrane protein, with (3-6) x 10(6) receptors per cell. Antagonist competition experiments displayed the order of potency: yohimbine greater than rauwolscine greater than phentolamine much greater than prazosin. Agonist competitions demonstrated the order of potency: p-aminoclonidine greater than (-)epinephrine much greater than (+)epinephrine much greater than (-)isoproterenol. This pharmacological profile is characteristic of the human platelet alpha 2-adrenergic receptor. The expressed receptor is able to couple to the Gi protein. Thus, when epinephrine competition for specific binding of [3H]rauwolscine was performed in the presence of 1 mM MgCl2, 1 mM Gpp[NH]p increased the Ki for epinephrine from 164 to 315 nM. Following preincubation of cultures with 1 mM isobutylmethylxanthine, 1 microM epinephrine decreased forskolin-stimulated cellular cyclic AMP accumulation by 72%. The response was biphasic, and the attenuation effect disappeared at 100 microM epinephrine. A transfected clone which did not demonstrate detectable alpha 2-adrenergic receptor mRNA displayed low levels of alpha 2-adrenergic receptor, (less than 50 fmol/mg membrane protein), similar to those found in the parent C127 cell line. In this clone, epinephrine did not attenuate but, rather, enhanced forskolin-stimulated cyclic AMP accumulation. This new C127 cell line expressing high levels of alpha 2-adrenergic receptor provides an abundant source of a single human adrenergic receptor subtype in membrane-bound conformation which is able to couple to the Gi protein and inhibit forskolin-stimulated adenylate cyclase activity. This cell line will facilitate studies of the structure: function relationship of the alpha 2-adrenergic receptor and should aid in separating the components of various signal transduction mechanisms putatively attributed to this receptor.  相似文献   

18.
A Tamir  A B Fawzi  J K Northup 《Biochemistry》1990,29(30):6947-6954
Gp is a major GTP-binding protein of human placenta and platelets [Evans, T., Brown, M. L., Fraser, E. D., & Northup, J. K. (1986) J. Biol. Chem. 261, 7052-7059]. High-affinity guanine nucleotide binding is associated with a polypeptide migrating identically with H-ras on SDS-PAGE. We have characterized the interactions of preparations of purified human placental Gp with guanine nucleotides in detergent solution. Equilibrium binding studies with [35S]GTP gamma S, [3H]Gpp(NH)p, and [3H]GTP identified a single class of sites with a dissociation constant of 10 +/- 1, 153 +/- 61, and 125 +/- 77 nM for the ligands, respectively. These three ligands were mutually competitive with Ki values consistent with the Kd values from direct binding experiments. Competition for the binding of [3H]Gpp(NH)p was used to determine the specificity of the site. Ki values determined from this assay were 14 nM for GTP gamma S, 143 nM for Gpp(NH)p, 3.3 microM for GDP beta S, 69 nM for GTP, and 64 nM for GDP. ATP, ADP, cAMP, cGMP, and NAD+ had no detectable affinity for this site. While the equilibrium binding data fit well to a single class of sites, association kinetics of these ligands were better fit to two rate constants. Dissociation kinetics, however, were not clearly resolved into two rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Membranes prepared from either neuronal or glial cultures contain alpha 2-adrenergic receptors as determined by the characteristics of [3H]yohimbine [( 3H]YOH) binding. The binding was rapid, reversible, saturable, dependent on the protein concentration used, and reached equilibrium by 5 min in membranes from both neuronal and glial cultures. Scatchard analyses of saturation isotherms revealed similar KD values of 13.7 +/- 1.35 nM (n = 10) for neuronal cultures and 18.42 +/- 2.34 nM (n = 10) for glial cultures. Glial cultures contained many more binding sites for [3H]YOH than neuronal cultures, having a Bmax of 1.6 +/- 0.33 pmol/mg protein (n = 10) compared with 0.143 +/- 0.018 pmol/mg protein (n = 10) in neurons. Drugs selective for alpha 2-adrenergic receptors were the most effective displacers of [3H]YOH binding in both neuronal and glial cultures, i.e., the alpha 2-adrenergic antagonists rauwolscine and yohimbine were better displacers than the other catecholamine antagonists prazosin, corynanthine, or propranolol. The agonists showed the same pattern with the alpha 2-selective drugs clonidine and naphazoline being the most effective competitors for the [3H]YOH site. GTP and its nonhydrolyzable analog. 5'-guanylyl-imidodiphosphate, were able to lower the affinity of the alpha 2-receptors for agonists but not antagonists in membranes from both neuronal and glial cultures, suggesting that the receptors are linked to a G protein in both cell types. The presence of alpha 2-adrenergic receptors in neuronal cultures was also substantiated by light microscopic autoradiography of [3H]YOH binding. In summary, we have demonstrated that both neuronal and glial cultures contain alpha 2-adrenoceptors.  相似文献   

20.
The relationship between the nucleoside transport system and the nitrobenzylthioinosine-sensitive and -resistant [3H]dipyridamole binding sites was examined by comparing the characteristics of [3H]dipyridamole binding with those of [3H]nitrobenzylthioinosine binding and [3H]-uridine influx in rabbit and guinea pig cerebral cortical synaptosomes. Two distinct high-affinity synaptosomal membrane-associated [3H]dipyridamole binding sites, with different sensitivities to inhibition by nitrobenzylthioinosine, were characterized in the presence of 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate (CHAPS, 0.01%) to prevent [3H]dipyridamole binding to glass tubes and filters. The nitrobenzylthioinosine-resistant [3H]-dipyridamole binding sites represented a greater proportion of the total membrane sites in guinea pig than in rabbit (40 vs. 10% based on inhibition studies). In rabbit, nitrobenzylthioinosine-sensitive [3H]dipyridamole binding (KD = 1.4 +/- 0.2 nM) and [3H]nitrobenzylthioinosine binding (KD = 0.30 +/- 0.01 nM) appeared to involve the same membrane site associated with the nitrobenzylthioinosine-sensitive nucleoside transporter. By mass law analysis, [3H]-dipyridamole binding in guinea pig could be resolved into two components based on sensitivity to inhibition by 1 microM nitrobenzylthioinosine. The nitrobenzylthioinosine-resistant [3H]dipyridamole binding sites were relatively insensitive to inhibition by all of the nucleoside transport substrates and inhibitors tested, with the exception of dipyridamole itself. In guinea pig synaptosomes, 100 microM dilazep blocked nitrobenzylthioinosine-resistant [3H]uridine transport completely but inhibited the nitrobenzylthioinosine-resistant [3H]dipyridamole binding component by only 20%. Furthermore, a greater percentage of the [3H]dipyridamole binding was nitrobenzylthioinosine resistant in guinea pig compared with rabbit, yet both species had a similar percentage of nitrobenzylthioinosine-resistant [3H]uridine transport.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号