首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
W Wang  F Kong 《Carbohydrate research》1999,315(1-2):117-127
The peracetylated hexasaccharide 1,2,4-tri-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6- O- (2,3,4-tri-O-acetyl-6-O-(2,4-di-O-acetyl-3,6-di-O-(2,3,4,6-tetra-O-acety l- beta-D-glucopyranosyl)-beta-D-glucopyranosyl)-beta-D-glucopyranosyl)-alp ha, beta-D-glucopyranose 21 was synthesized in a blockwise manner, employing trisaccharide trichloroacetimidate 2,4-di-O-acetyl-3,6-di-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)- alpha-D-glucopyranosyl trichloroacetimidate 17 as the glycosyl donor, and trisaccharide 4-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6-O-(2,3,4 -tri -O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S)ethylidene-alpha-D-glucopyra nose 18 as the acceptor. The donor 17 and acceptor 18 were readily prepared from trisaccharides 3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-6-O-(2,3,4-tri-O-acet yl- 6-O-chloroacetyl-beta-D-glucopyranosyl)-1,2-O-(R,S)ethylidene-alpha-D- glucopyranose 10 and 3,6-di-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranose 11, respectively, which were obtained from rearrangement of orthoesters 3,4-di-O-acetyl-6-O-chloroacetyl-alpha-D-glucopyranose 1,2-(3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranosid-6-yl orthoacetate) 8 and 3,4,6-tri-O-acetyl-alpha-D-glucopyranose 1,2-(3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranosid-6-yl orthoacetate) 9, respectively. The orthoesters were prepared from selective coupling of the disaccharide 3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S) ethylidene-alpha-D-glucopyranose 4 with 'acetobromoglucose' (tetra-O-acetyl-alpha-D-glucopyranosyl bromide) and 6-O-chloroacetylated 'acetobromoglucose', respectively. To confirm the selectivity of the orthoester formation and rearrangement, the disaccharide 4-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyl)-1,2-O-(R,S ) ethylidene-alpha-D-glucopyranose 7 was prepared from 4 by selective tritylation, acetylation and detritylation. The title compound, an elicitor-active D-glucohexaose 3-O-(beta-D-glucopyranosyl)-6-O-(6-O-(3,6-di-O-(beta-D-glucopyranosyl)-b eta -D-glucopyranosyl)-beta-D-glucopyranosyl)-alpha,beta-D-glucopyranose 1, was finally obtained by Zemplén deacetylation of 21 in quantitative yield.  相似文献   

2.
Reductive cleavage of fully methylated, partially O-carboxymethylated cellulose had previously been shown to produce 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-, -2-O-(methoxycarbonylmethyl)-3,6-di-O-methyl-, -3-O-(methoxycarbonylmethyl)-2,6-di-O-methyl-, -6-O-(methoxycarbonylmethyl)-2,3-di-O-methyl-, -2,3-di-O-(methoxycarbonylmethyl)-6-O-methyl-, -2,6-di-O-(methoxycarbonylmethyl)-3-O-methyl-, -3,6-di-O-(methoxycarbonylmethyl)-2-O-methyl-, and -2,3,6-tri-O-(methoxycarbonylmethyl)-D-glucitol. Described herein is the independent synthesis of these derivatives, except for the first, which had been reported. In addition, their 1H-n.m.r. spectra, chemical-ionization (NH3) mass spectra, and electronionization mass spectra are tabulated.  相似文献   

3.
The tetrasaccharides O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D- mannopyranosyl-(1----6)]-O-(4-deoxy-beta-D-lyxo-hexopyranosyl)-(1- ---4)-2- acetamido-2-deoxy-alpha, beta-D-glycopyranose (22) and O-alpha-D-mannopyranosyl-(1----3)-O-[alpha-D-mannopyranosyl-(1----6)]-O- beta-D-talopyranosyl-(1----4)-2-acetamido-2-deoxy-alpha, beta-D- glucopyranose (37), closely related to the tetrasaccharide core structure of N-glycoproteins, were synthesized. Starting with 1,6-anhydro-2,3-di-O-isopropylidene-beta-D-mannopyranose, the glycosyl donors 3,6-di-O-acetyl-2-O-benzyl-2,4-dideoxy-alpha-D-lyxo- hexopyranosyl bromide (10) and 3,6-di-O-acetyl-2,4-di-O-benzyl-alpha-D-talopyranosyl bromide (30), were obtained in good yield. Coupling of 10 or 30 with 1,6-anhydro-2-azido-3-O-benzyl-beta-D-glucopyranose to give, respectively, the disaccharides 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2-O-benzyl-4 -deoxy- beta-D-lyxo-hexopyranosyl)-beta-D-glucopyranose and 1,6-anhydro-2-azido-3-O-benzyl-2-deoxy-4-O-(3,6-di-O-acetyl-2,4-di-O-ben zyl- beta-D-talopyranosyl)-beta-D-glucopyranose was achieved with good selectivity by catalysis with silver silicate. Simultaneous glycosylation of OH-3' and OH-6' of the respective disaccharides with 2-O-acetyl-3,4,6-tri-O-benzyl-alpha-D-mannopyranosyl chloride yielded tetrasaccharide derivatives, which were deblocked into the desired tetrasaccharides 22 and 37.  相似文献   

4.
Two independent approaches were investigated for the synthesis of 3,4-di-O-acetyl-1,6:2,5-dianhydro-1-thio-D-glucitol (18), a key intermediate in the synthesis of 1,3,4-tri-O-acetyl-2,5-anhydro-6-thio-alpha-D-glucoseptanose (13), needed as glycosyl donor. In the first approach 1,6-dibromo-1,6-dideoxy-D-mannitol was used as starting material and was converted via 2,5-anhydro-1,6-dibromo-1,6-dideoxy-4-O-methanesulfonyl-3-O-tetrahydropy ranyl-D-glucitol into 18. The second approach started from 1,2:5,6-di-O-isopropylidene-D-mannitol and the allyl, 4-methoxybenzyl as well as the methoxyethoxymethyl groups were used, respectively, for the protection of the 3,4-OH groups. The resulting intermediates were converted via their 1,2:5,6-dianhydro derivatives into the corresponding 3,4-O-protected 2,5-anhydro-6-bromo-6-deoxy-D-glucitol derivatives. The 1,6-thioanhydro bridge was introduced into these compounds by exchanging the bromine with thioacetate, activating OH-1 by mesylation and treating these esters with sodium methoxide. Among these approaches, the 4-methoxybenzyl protection proved to be the most suitable for a large scale preparation of 18. Pummerer rearrangement of the sulfoxide, obtained via oxidation of 18 gave a 1:9 mixture of 1,3,4-tri-O-acetyl-2,5-anhydro-6-thio-alpha-L-gulo- (12) and -D-glucoseptanose 13. When 12 or 13 were used as donors and trimethylsilyl triflate as promoter for the glycosylation of 4-cyanobenzenethiol, a mixture of 4-cyanophenyl 3,4-di-O-acetyl-2,5-anhydro-1,6-dithio-alpha-L-gulo- (58) and -alpha-D-glucoseptanoside (61) was formed suggesting an isomerisation of the heteroallylic system of the intermediate. A similar mixture of 58 and 61 resulted when 18 was treated with N-chloro succinimide and the mixture of chlorides was used in the presence of zinc oxide for the condensation with 4-cyanobenzenethiol. When 4-nitrobenzenethiol was applied as aglycon and boron trifluoride etherate as promoter, a mixture of 4-nitrophenyl 3,4-di-O-acetyl-2,5-anhydro-1,6-dithio-alpha-L-gulo- (60) and -alpha-D-glucoseptanoside (62) was obtained. Deacetylation of 58, 61 and 62 according to Zemplen afforded 4-cyanophenyl 2,5-anhydro-1,6-dithio-alpha-L-glucoseptanoside (59), 4-cyanophenyl 2,5-anhydro-1,6-dithio-alpha-D-glucoseptanoside (63) and 4-nitrophenyl 2,5-anhydro-1,6-dithio-alpha-D-glucoseptanoside (66), respectively. The 4-cyano group of 63 was transformed into the 4-aminothiocarbonyl, and the 4-(methylthio)(imino)methyl derivative and the 4-nitro group of 66 into the acetamido derivative. All of these thioglycosides displayed a stronger oral antithrombotic effect in rats compared with beciparcil, used as reference.  相似文献   

5.
Starting from 1,2,4-tri-O-acetyl-3,6-anhydro-alpha-d-galactopyranose, 4-O-acetyl-3,6-anhydro-1,2-O-(1-cyanoethylidene)-alpha-d-galactopyranose (7) was synthesized by treatment with cyanotrimethylsilane. Additionally, 3,4-di-O-acetyl-1,2-O-(1-cyanoethylidene)-6-O-tosyl-alpha-d-galactopyranose was prepared from the corresponding bromide and both cyanoethylidene derivatives were used as donors in glycosylation reactions. The coupling with benzyl 2,4,6-tri-O-acetyl-3-O-trityl-beta-d-galactopyranoside provided exclusively the beta-linked disaccharides in approximately 30% yield. The more reactive methyl 2,3-O-isopropylidene-4-O-trityl-alpha-l-rhamnopyranoside gave with donors 3 and 7 the corresponding disaccharides in nearly 60% yield. Furthermore, the synthesis of 3,6-anhydro-4-O-trityl-1,2-O-[1-(endo-cyano)ethylidene]-alpha-d-galactopyranose, which can be used as a monomer for polycondensation reaction is described.  相似文献   

6.
Two key synthons for the title pentasaccharide derivative, methyl O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L-idopyranosyluronate)-(1----4)-6-O-acetyl- 2-azido - 3-O- benzyl-2-deoxy-beta-D-glucopyranoside and O-(methyl 2,3-di-O-benzyl-4-O- chloroacetyl-beta-D-glucopyranosyluronate)-(1----4)-3,6-di-O-acetyl-2-az ido-2- deoxy-alpha-D- glucopyranosyl bromide, were prepared from a common starting material, cellobiose. They were coupled to give a tetrasaccharide derivative that underwent O-dechloroacetylation to the corresponding glycosyl acceptor. Its condensation with the known 6-O-acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl bromide afforded a 77% yield of suitably protected pentasaccharide, methyl O-(6-O- acetyl-2-azido-3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)- O- (methyl 2,3- di-O-benzyl-beta-D-glucopyranosyluronate)-(1----4)-O-(3,6-di-O-acetyl-2- azido-2 - deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2-O-benzoyl-3-O-benzyl-alpha-L- idopyranosyluronate)- (1----4)-6-O-acetyl-2-azido-3-O-benzyl-2-deoxy-beta-D-glucopyranoside. Sequential deprotection and sulfation gave the decasodium salt of methyl O-(2- deoxy-2-sulfamido-6-O-sulfo-alpha-D-glucopyranosyl)-(1----4)-O-(be ta-D- glucopyranosyl-uronic acid)-(1----4)-O-(2-deoxy-2-sulfamido-3,6-di-O-sulfo-alpha-D-gluco pyranosyl)- (1----4)-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-(1----4)-2-deoxy-2- sulfamido-6-O- sulfo-beta-D-glucopyranoside (3). In a similar way, the trisaccharide derivative, the hexasodium salt of methyl O-(2-deoxy-2-sulfamido-6-O-sulfo-alpha-D- glucopyranosyl)- (1----4)-O-(beta-D-glucopyranosyluronic acid)-(1----4)-2-deoxy-2-sulfamido-3,6- di-O- sulfo-alpha-D-glucopyranoside (4) was synthesized from methyl O-(6-O-acetyl-2- azido- 3,4-di-O-benzyl-2-deoxy-alpha-D-glucopyranosyl)-(1----4)-O-(methyl 2,3-di-O- benzyl-beta- D-glucopyranosyluronate)-3,6-di-O-acetyl-2-azido-2-deoxy-alpha-D- glucopyranoside. The pentasaccharide 3 binds strongly to antithrombin III with an association constant almost equivalent to that of high-affinity heparin, but the trisaccharide 4 appears not to bind.  相似文献   

7.
Glycosidation of 2,5-anhydro-1,6-di-O-benzoyl-D-mannitol with methyl(2,3,4-tri-O-acetyl-alpha-d-glucopyranosyl-1-O-trichloroacetimidate)uronate in the presence of trimethylsilyl triflate afforded the corresponding 3-O-beta-glycoside, which after deprotection was converted into its hexa-O-sulfate with DMF x SO3 to give after treatment with sodium acetate and subsequent saponification of the methyl ester with sodium hydroxide the hepta sodium salt of 2,5-anhydro-3-O-(beta-d-glucopyranosyl uronate)-D-mannitol hexa-O-sulfate. Glycosidation of the same acceptor with the alpha-thiophenylglycoside of methyl 2,4-di-O-acetyl-3-O-benzyl-L-idopyranosyl uronate in the presence of NIS/TfOH afforded the corresponding 3-O-alpha-glycoside in very low yield, therefore the alpha-thiophenylglycoside of 2-O-acetyl-2,4-O-benzylidene-3-O-benzyl-L-idopyranose was used as donor. The terminal hydroxymethyl group of the obtained disaccharide was subsequently oxidised with NaOCl/TEMPO and the obtained iduronic acid derivative was converted into the hepta sodium salt of 2,5-anhydro-3-O-(-alpha-L-idopyranosyluronate)-D-mannitol hexa-O-sulfonate with DMF x SO3 and subsequent treatment with sodium acetate.  相似文献   

8.
The fate of 4-linked D-glucopyranosyluronic residues under reductive-cleavage conditions was investigated by using the Klebsiella aerogenes type 54 strain A3 capsular polysaccharide. Treatment of the fully methylated polysaccharide with triethylsilane and trimethylsilyl trifluoromethanesulfonate in dichloromethane, followed by in situ acetylation, yielded 1,5-anhydro-2,3,4,6-tetra-O-methyl-D-glucitol, 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-glucitol, and 3-O-acetyl-1,5-anhydro-2,4-di-O-methyl-L-fucitol, as expected, but the expected product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue, namely, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-L-gulonate, was not observed. Instead, methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-L-gulonate (6) was identified as the sole product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue. That compound 6 arose as a result of rearrangement during reductive cleavage rather than by reductive cleavage of a 5-linked D-glucofuranosyluronic residue, was established by reductive cleavage of the fully methylated polysaccharide following reduction of its ester groups with either lithium aluminum hydride or lithium aluminum deuteride. The products of the latter reductive cleavage were the same as before, except for the absence of 6 and the presence of 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-glucitol, or its 6,6-dideuterio isomer. Although the reductive-cleavage technique is suitable for the direct analysis of polysaccharides containing 4-linked D-glucopyranosyluronic residues, it does not establish whether the uronic residue is a 4-linked pyranoside or a 5-linked furanoside. The expected product is, however, derived from the 4-linked D-glucopyranosyluronic residue after sequential methylation, reduction of its ester group and reductive cleavage.  相似文献   

9.
1,2,3,4-Tetra-O-acetyl-5-thio-D-ribopyranose as well as its 1-bromide were used as donors in the reaction with 4-cyano- and 4-nitrobenzenethiol, to give the corresponding thioglycosides in different anomeric ratios depending on the reaction conditions. Zemplén deacetylation afforded 4-cyanophenyl as well as 4-nitrophenyl 1,5-dithio-alpha- and beta-D-ribopyranosides, respectively. 1,3,4-Tri-O-acetyl-2-deoxy-5-thio-D-erythro-pentopyranose was synthesized from methyl 2-deoxy-D-erythro-pentofuranoside and was coupled with 4-cyano- and 4-nitrobenzenethiol to give anomeric mixtures from which 4-cyanophenyl as well as 4-nitrophenyl 1,5-dithio-beta-D-erythro-pentopyranosides were isolated after deacetylation. 1,4-Di-O-acetyl-2,3-dideoxy-5-thio-D-glycero-pentopyranose was obtained starting from 1,2,5,6-di-O-isopropylidene-D-mannitol and used as the donor in the glycosylation reaction with 4-cyano- and 4-nitrobenzenethiol. The resulting anomeric mixtures were separated to give, after deacetylation, 4-cyanophenyl as well as 4-nitrophenyl 2,3-dideoxy-1,5-dithio-beta-D-glycero-pentopyranosides. All of these thioglycosides showed significant antithrombotic activity on rats after oral administration.  相似文献   

10.
The fate of terminal (nonreducing) alpha-D-glucopyranosyluronic groups under reductive cleavage conditions was investigated by using the Klebsiella K2 (strain NCTC-418) capsular polysaccharide. Treatment of the fully methylated polysaccharide (1) with triethylsilane and a mixture of trimethylsilyl methanesulfonate (Me3SiOSO2CH3) and boron trifluoride etherate (BF3.Et2O) as the catalyst, resulted in complete cleavage of all glycosidic linkages to yield the expected products, namely 3-O-acetyl-1,5-anhydro-2,4,6-tri-O-methyl-D-glucitol (2), 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-mannitol (3), 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-glucitol (4), and methyl 2,6-anhydro-3,4,5-tri-O-methyl-L-gulonate. Treatment of 1 with trimethylsilyl trifluoromethanesulfonate (Me3SiOSO2CF3) as the catalyst resulted in incomplete cleavage of the glycosidic linkage of the methylated D-glucopyranosyluronic group, to yield 4-O-acetyl-1,5-anhydro-2,6-di-O-methyl- 3-O-(methyl2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate )-D-mannitol (9). Reductive cleavage of 1 in the presence of BF3.Et2O resulted in incomplete cleavage of all glycosidic linkages and gave rise to all four dimers (including 9) that could be formed from a tetrasaccharide repeating unit. The proposed structures of these dimers are based upon their composition, as established by chemical ionization mass spectrometry and by the reported structure of the polysaccharide. A small proportion of 1,5-anhydro-2,4,6-tri-O-methyl-3-O-(methyl 2,3,4-tri-O-methyl-alpha-D-glucopyranosyluronate)-D-mannitol (12) was also detected in the products of the BF3.Et2O-catalyzed reductive cleavage. The presence of 12 is chemical evidence for the phase of the tetrasaccharide repeating unit in the polysaccharide. The reductive cleavage of 1 was also accomplished after reduction of its ester groups with lithium aluminum hydride. Complete cleavage of all glycosidic linkages was observed when either Me3SiOSO2CF3 or Me3SiOSO2CH3-BF3.Et2O was used to catalyze reductive cleavage, and anhydroalditols 2, 3, 4, and 6-O-acetyl-1,5-anhydro-2,3,4-tri-O-methyl-D-glucitol were produced, as expected.  相似文献   

11.
L-alanyl-D-glucose, L-valyl-D-glucose, L-phenylalanyl-D-glucose and L-phenylalanyl-lactose esters were synthesized enzymatically using two lipases viz., Rhizomucor miehei lipase (RML) and porcine pancreas lipase (PPL) and tested for their potential as inhibitors of angiotensin converting enzyme (ACE) in vitro. The esters exhibited concentration related ACE inhibitory activity. The potency of the various esters measured in terms of IC50 values were as follows: L-phenylalanyl-D-glucose, IC50-0.121 mM (mixture of five diastereomeric esters: 6-O-24.1%; 3-O-23.3%; 2-O-19.2%; 2,6-di-O-16.6% and 3,6-di-O-16.8% from the total yield of 92.4%); L-phenylalanyl-lactose, IC50-0.229 mM (mixture of three diastereomeric esters: 6-O-42.1%; 6'-O-30.9%; and 6,6'-di-O-27.0% from the total yield of 50.58%); alanyl-D-glucose, IC50-0.23 mM (mixture of five diastereomeric esters: 6-O-46.7%; 3-O-11.5%; 2-O-19.9%; 2,6-di-O-6.6% and 3,6-di-O-15.3% from the total yield of 26.5%) and L-valyl-D-glucose, IC50-0.396 mM (mixture of five diastereomeric esters: 6-O-32.4%; 3-O-26.5%; 2-O-26.4%; 2,6-di-O-8.8% and 3,6-di-O-5.9% from the total yield of 68.2%). These in vitro data suggest a potential therapeutic role for the aminoesters of carbohydrates as inhibibitors of ACE.  相似文献   

12.
The naturally occurring antioxidant Ascopyrone P (1,5-anhydro-4-deoxy-D-glycero-hex-1-en-3-ulose, 1) was prepared from the rare sugar 1,5-anhydro-D-fructose (AF, 3) in three steps in an overall yield of 36%. Thus, acetylation of 3 afforded the enolone 3,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-3-en-2-ulopyranose (4), which could be isomerised to 2,6-di-O-acetyl-1,5-anhydro-4-deoxy-D-glycero-hex-1-ene-3-ulose (6). Deacetylation of 6 under mild conditions gave crystalline Ascopyrone P (1).  相似文献   

13.
Permethylated alginic acids comprised of 4-linked D-mannopyranosyluronic acid and 4-linked L-gulopyranosyluronic acid residues undergo reductive cleavage to yield, after acetylation, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-D-mannonate (2b) and methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-D-gluconate (3b) as major products. Small amounts (ca. 13%) of ring-contracted products, namely methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-D-mannonate (9) and methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-D-gluconate (10), were also observed in these experiments. These results are in marked contrast to previous results on the reductive cleavage of 4-linked D-glucopyranosyluronic acid residues, wherein the ring-contracted product was formed exclusively. Formation of the ring-contracted products could be completely eliminated by reduction (LiAlH4) of ester groups in the permethylated alginic acid prior to reductive cleavage. In the latter experiments, 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-mannitol (5b) and 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-L-gulitol (6b) were the sole products of reductive cleavage of the 4-linked ManA and 4-linked GulA residues, respectively. However, in the previous experiments it was noted that low yields of permethylated alginic acids were obtained and that extensive depolymerization occurred under methylation conditions. Depolymerization could be avoided and higher yields of permethylated polysaccharides could be obtained, by reduction of the carboxyl groups of the alginic acids prior to methylation. Reductive cleavage of the latter polysaccharides yielded the products expected from 4-linked D-mannopyranosyl and 4-linked L-gulopyranosyl residues, namely 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-D-mannitol (13b) and 4-O-acetyl-1,5-anhydro-2,3,6-tri-O-methyl-L-gulitol (14b), respectively. Using the latter analytical strategy, it was established that the Macrocystis pyrifera alginate was comprised of 60% 4-linked ManA and 40% 4-linked GulA residues, whereas the Pseudomonas aeruginosa alginate was comprised of 80% 4-linked ManA and 20% 4-linked GulA residues.  相似文献   

14.
A convenient method of synthesis of 1,6-anhydro-4-deoxy-2-O-tosyl-4-fluoro-beta-D-glucopyranose by fusion of 1,6;3,4-dianhydro-2-O-tosyl-beta-D-galactopyranose with 2,4,6-trimethylpyridinium fluoride was found. By successive action of ammonia, methyl trifluoroacetate, and acetic anhydride, the resulting compound was transformed into 1,6-anhydro-3-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-beta-D-glucopyranose, which was converted into 3,6-di-O-acetyl-2,4-dideoxy-2-trifluoroacetamido-4-fluoro-alpha-D-glucopyranosyl fluoride by the reaction with HF/Py. The resulting fluoride was further used as a glycosyl donor in the synthesis of methylumbelliferyl N-acetyl-4-deoxy-4-fluoro-beta-D-glucosaminide.  相似文献   

15.
2-O-[4-O-(2-Acetamido-2-deoxy-beta-D-mannopyranosyl)-alpha-D- glucopyranosyl]-alpha,beta-L-rhamnopyranose, a structural component of the capsular polysaccharide of Streptococcus pneumoniae type 19F, has been synthesized by sequential glycosylation reactions using the glycosyl acceptor 2,2,2-trichloroethyl 3,4-di-O-benzyl-alpha-L-rhamnopyranoside (prepared from the known 2-O-acetyl-3,4-di-O-benzyl-alpha-L-rhamnopyranosyl chloride), and the glycosyl donors 4-O-acetyl-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl chloride and 4,6-di-O-acetyl-2-azido-3-O-benzyl-2-deoxy-alpha-D-mannopyranosyl bromide (prepared in seven steps from the known methyl 2-azido-4,6-O-benzylidene-2-deoxy-alpha-D-altropyranoside). The corresponding 8-(methoxycarbonyl)octyl glycoside has also been synthesized, by coupling of 8-(methoxycarbonyl)octyl trifluoromethanesulfonate and the sodium salt of 2-O-[4-O-(2-acetamido-4,6-di-O-acetyl-3-O-benzyl-2-deoxy-beta-D- mannopyranosyl)-2,3,6-tri-O-benzyl-alpha-D-glucopyranosyl]-3,4-di-O- benzyl-alpha,beta-L-rhamnopyranose.  相似文献   

16.
Treatment of 1,6:2,5-dianhydro-3,4-di-O-methanesulfonyl-1-thio-D-glucitol in methanol with sodium hydroxide afforded 1,6:2,5:3,4-trianhydro-1-thio-allitol, 1,4:2,5-dianhydro-6-methoxy-1-thio-D-galactitol, 1,6:2,5-dianhydro-4-O-methyl-1 -thio-D-glucitol, 1 ,6:2,5-dianhydro-3-O-methanesulfonyl-1 -thio-D-glucitol and 1 ,6:2,5-dianhydro-4-deoxy-1-thio-D-erythro-hex-3-ulose (14) in 5, 4, 28, 5.5 and 41% yield, respectively. Formation of these derivatives can be explained via a common sulfonium intermediate. Reduction of 14 with sodium borohydride and subsequent acetylation afforded 3-O-acetyl-1,6:2,5-dianhydro-4-deoxy-1-thio-D-xylo-hexitol, the absolute configuration of which was proved by X-ray crystallography. The 1,6:2,5-dianhydro-1-thio-D-hexitol derivatives in which the free OH groups were protected by acetylation, methylation or mesylation were converted by a Pummerer reaction of their sulfoxides into the corresponding 1-O-acetyl hexoseptanose derivatives which were used as donors for the glycosidation of 4-cyano- and 4-nitrobenzenethiol, respectively. The Pummerer reaction of 1,6:2,5-dianhydro-4-deoxy-3-O-methyl-1-thio-D-xylo-hexitol S-oxide gave, besides 1-O-acetyl-2,5-anhydro-3-deoxy-4-O-methyl-6-thio-alpha-L- (23) and 1-O-acetyl-2,5-anhydro-4-deoxy-3-O-methyl-6-thio-alpha-D-xylo-hexoseptanose (25), 1-O-acetyl-4-deoxy-2,6-thioanhydro-D-lyxo-hexopyranose, formed in a rearrangement reaction. The same rearrangement took place, when a mixture of 23 and 25 was used as donor in the glycosidation reaction with 4-cyanobenzenethiol, applying trimethylsilyl triflate as promoter. The oral antithrombotic activity of the obtained alpha-thioglycosides was determined in rats, using Pescador's model.  相似文献   

17.
4-Pentenyl (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-(3,6-di-O-acetyl-2-deoxy-2-phthalimido-beta-d-glucopyranosyl)-(1-->3)-(2,6-di-O-benzoyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-d-glucopyranoside (4) was synthesized by regioselective glycosylation of 4-pentenyl (2,6,-di-O-benzoyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzoyl-beta-d-glucopyranoside and (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-3,6-di-O-acetyl-2-deoxy-2-phthalimido-beta-d-glucopyranosyl chloride. By conversion of the protecting groups followed by thioacetylation, 4 was transformed into the corresponding lacto-N-neotetraose derivative, 5-(acetylthio)pentenyl (2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-O-(3,6-di-O-acetyl-2-acetamido-2-deoxy-beta-d-glucopyranosyl)-(1-->3)-(2,4,6-di-O-acetyl-beta-d-galactopyranosyl)-(1-->4)-2,3,6-tri-O-acetyl-beta-d-glucopyranoside (6). The lacto-N-neotetraose derivative 6 was introduced into carbosilane dendrimer cores of three shapes, and three kinds of new carbosilane dendrimers peripherally functionalized by lacto-N-neotetraose were obtained.  相似文献   

18.
An efficiently stereocontrolled total synthesis of GM3 alpha-D-Neup5Ac-(2----3)-beta-D-Galp-(1----4)-beta-D-Glcp-(1----1) -Cer was achieved by employing both methyl 5-acetamido-4,7,8,9-tetra-O-benzyl-2-bromo-2,3,5-trideoxy-3- phenylthio-D-erythro-beta-L-gluco-2-nonulopyranosonate for the key sialylation step, and O-[methyl(5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha -D-galacto-2-nonulopyranosyl)onate]-(2----3)-O-(2,4,6-tri-O- acetyl-beta-D-galactopyranosyl-(1----4)-3,6-di-O-acetyl-2-O-pivaloyl- alpha-D-glucopyranosyl trichloroacetimidate and fluoride for the key coupling step with a ceramide derivative. These two steps were significantly altered and improved in comparison with our previous synthesis that had been executed without use of stereocontrolling auxiliaries. GM3 was obtained in 4.5% overall yield in 19 steps starting from allyl O-(2,6-di-O-acetyl-3,4-O-isopropylidene-beta-D-galactopyranosyl)-(1----4 )-2,3,6-tri-O-acetyl-beta-D-glucopyranoside.  相似文献   

19.
4'-O-Glycosylation of 2-azidoethyl 2,3,6-tri-O-benzyl-4-O-(2,3-di-O- benzyl-6-O-benzoyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with a disaccharide donor, 4-trichloroacetamidophenyl 4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-beta-D- galactopyranosyl)-1-thio-2-trichloroacetamido-beta-D-galactopyranoside, in dichloromethane in the presence of N-iodosuccinimide and trifluoromethanesulfonic acid resulted in a tetrasaccharide, 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)-(1-->3)- (4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D-galactopyranosyl)- (1-->4)-(2,3-di-O-benzyl-6-O-benzoyl-beta-D-galactopyranosyl)- (1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside, in 69% yield. The complete removal of O-protecting groups in the tetrasaccharide, the replacement of N-trichloroacetyl by N-acetyl group, and the reduction of the aglycone azide group to amine led to the target aminoethyl glycoside of beta-D-Gal- (1-->3)-beta-D-GalNAc-(1-->4)-beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of asialo-GM1 ganglioside in 72% overall yield. Selective 3'-O-glycosylation of 2-azidoethyl 2,3,6-tri-O- benzyl-4-O-(2,6-di-O-benzyl-beta-D-galactopyranosyl)-beta-D-glucopyranoside with thioglycoside methyl (ethyl 5-acetamido-4,7,8,9-tetra-O- acetyl-3,5-dideoxy-2-thio-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and trifluoroacetic acid afforded 2-azidoethyl [methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl)oate in acetonitrile in the presence of N-iodosuccinimide and tri-fluoracetic acid afforded 2-azidoethyl[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl- 3,5-dideoxy-D-glycero-alpha-D-galacto-2-nonulopyranosyl) (2,6-di-O-benzyl-beta-D-galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D- glucopyranoside, the selectively protected derivative of the oligosaccharide chain of GM3 ganglioside, in 79% yield. Its 4'-O-glycosylation with a disaccharide glycosyl donor, (4-trichloroacetophenyl-4,6-di-O-acetyl-2-deoxy-3-O-(2,3,4,6-tetra-O- acetyl-beta-D-galactopyranosyl) 1-thio-2-trichloroacetamido-beta-D-galactopyranoside in dichloromethane in the presence of N-iodosuccinimide and trifluoroacetic acid gave 2-azidoethyl (2,3,4,6-tetra-O-acetyl-beta-D-galactopyranosyl)- (1-->3)-(4,6-di-O-acetyl-2-deoxy-2-trichloroacetamido-beta-D- galactopyranosyl)-(1-->4)-[[methyl (5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-alpha-D- galacto-2-nonulopyranosyl)onate]-(2-->3)]-(2,6-di-O-benzyl-beta-D- galactopyranosyl)-(1-->4)-2,3,6-tri-O-benzyl-beta-D-glucopyranoside in 85% yield. The resulting pentasaccharide was O-deprotected, its N-trichloroacetyl group was replaced by N-acetyl group, and the aglycone azide group was reduced to afford in 85% overall yield aminoethyl glycoside of beta-D-Gal-(1-->3)-beta-D-GalNAc-(1-->4)-[alpha-D-Neu5Ac-(2-->3)]- beta-D-Gal-(1-->4)-beta-D-Glc-OCH2CH2NH2 containing the oligosaccharide chain of GM1 ganglioside. The English version of the paper: Russian Journal of Bioorganic Chemistry, 2004, vol. 30, no. 1; see also http://www.maik.ru.  相似文献   

20.
3,4-Anhydro-1,2-O-isopropylidene-beta-D-tagatopyranose (8) and 4,5-anhydro-1,2-O-isopropylidene-beta-D-fructopyranose (10) have been prepared by treatment of 3,5-di-O-acetyl-1,2-O- isopropylidene-4-O-toluene-p-sulfonyl-beta-D-fructopyranose with methanolic sodium methoxide. The structures of 8 and 10 were assigned by 1H and 13C NMR spectroscopy and that of 10 by X-ray crystallography; both exist in half-chair conformations. Compounds 8 and 10 interconvert in aqueous sodium hydroxide, giving a ratio of 1:2 at equilibrium. The monoacetates of 8 and 10 (5-O-acetyl-3,4-anhydro-1,2-O-isopropylidene-beta-D-tagatopyranose and 3-O-acetyl-4,5-anhydro-1,2-O-isopropylidene-beta-D-fructopyranose) undergo stereospecific epoxide ring opening in 80% acetic acid to give mainly the axial monoacetates 5-O-acetyl-1,2-O-isopropylidene-beta-D-fructopyranose and 4-O-acetyl-1,2-O-isopropylidene-beta-D-tagatopyranose, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号