首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The autoimmune regulator gene (AIRE) plays a fundamental role in tolerance by promoting the expression of tissue-specific antigens in medullary thymic epithelial cells (mTECs). Recently, AIRE expression was detected also in human keratinocytes and in tumors originating in stratified epithelia. Here, we tested whether AIRE is expressed in cancer cells. We analyzed AIRE expression in cancer cases from The Cancer Genome Atlas (TCGA) RNA-seq dataset and we found association with better outcome. AIRE protein expression was verified by immunohistochemistry in a cohort of 39 human breast cancer specimens and its prognostic relevance was confirmed in microarray-based gene expression data set NKI-295 and KM-Plotter. Both in the RNA-seq and gene expression datasets analyzed, AIRE expression was an independent strong prognostic factor for relapse-free survival (RFS), particularly in estrogen receptor-positive tumors. Enrichment of translation-related pathways was observed in AIRE-expressing tumors by Ingenuity Pathway Analysis and a significant increase of cells in G1 phase and activation of caspase cascades was induced by AIRE transfection in breast cancer luminal cell lines, suggesting that AIRE-induced over-translation of proteins lead to cycle arrest and apoptosis. These data are the first to identify AIRE expression in breast cancer and an association with prognosis.  相似文献   

5.
Crosstalk between thymocytes and thymic epithelial cells is critical for T cell development and the establishment of central tolerance. Medullary thymic epithelial cells (mTECs) play important roles in the late stage of T cell development, especially negative selection and Treg generation. The function of mTECs is highly dependent on their characteristic features such as ectopic expression of peripheral tissue restricted antigens (TRAs) and their master regulator—autoimmune regulator (Aire), expression of various chemokines and cytokines. In this review, we summarize the current understanding of cellular and molecular mechanisms of mTEC development and its functions in T cell development and the establishment of central tolerance. The open questions in this field are also discussed. Understanding the function and underlying mechanisms of mTECs will contribute to the better control of autoimmune diseases and the improvement of immune reconstitution during aging or after infection, chemotherapy or radiotherapy.  相似文献   

6.
7.
The autoimmune regulator (AIRE) gene is a gene responsible for autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. Here we show that AIRE is expressed in human peripheral CD4-positive T-cells, and most highly in antigen-and interleukin 2-stimulated T (IL-2T) cells. Mitogen-activated protein kinases (MAPKs), including MAPK kinase (MEK) 1/2 and p38 MAPK, were phosphorylated in IL-2T cells and the expression of the AIRE gene was inhibited by a specific p38 MAPK inhibitor (SB203580), thereby indicating that AIRE gene expression is controlled by the MAPK pathway in IL-2T cells. These data suggested the possible significance of the AIRE gene in the peripheral immune system.  相似文献   

8.
In the human thymus, AIRE (autoimmune regulator) gene is expressed in a very limited type of medullary thymic epithelial cells (mTECs) and no cognate cell lines are available, hence the molecular analysis of AIRE gene function has been difficult. To improve this situation, we attempted to isolate Aire-expressing cells and established three cell lines (Aire+TEC1, Aire+TEC2, Aire+DC) from the abnormally enlarged thymus, which was developed in the transgenic mice expressing SV40 T-antigen driven by the mouse Aire gene promoter. When these Aire+ cell lines were co-cultured with fresh thymocytes, they adhered to the majority of thymocytes and induced apoptosis as if negative selection of T-cells in the thymus is occurring in vitro. Further analysis revealed that these Aire+ cell lines are derived from mTECs and exhibit characteristic natures of “antigen presenting cells” including several distinct abilities: to express a variety of peripheral tissue-specific antigens, to produce immunoproteasome and immunological synapse, and to express some of TNFSFs (tumor necrosis factor super families). Thus, the newly established Aire+ cell lines will be invaluable for the further detailed analysis of AIRE gene function in the central tolerance of immunity and autoimmune disease.  相似文献   

9.
The expression of melanoma-associated antigens (MAA) being limited to normal melanocytes and melanomas, MAAs are ideal targets for immunotherapy and melanoma vaccines. As MAAs are derived from self, immune responses to these may be limited by thymic tolerance. The extent to which self-tolerance prevents efficient immune responses to MAAs remains unknown. The autoimmune regulator (AIRE) controls the expression of tissue-specific self-antigens in thymic epithelial cells (TECs). The level of antigens expressed in the TECs determines the fate of auto-reactive thymocytes. Deficiency in AIRE leads in both humans (APECED patients) and mice to enlarged autoreactive immune repertoires. Here we show increased IgG levels to melanoma cells in APECED patients correlating with autoimmune skin features. Similarly, the enlarged T cell repertoire in AIRE(-/-) mice enables them to mount anti-MAA and anti-melanoma responses as shown by increased anti-melanoma antibodies, and enhanced CD4(+) and MAA-specific CD8(+) T cell responses after melanoma challenge. We show that thymic expression of gp100 is under the control of AIRE, leading to increased gp100-specific CD8(+) T cell frequencies in AIRE(-/-) mice. TRP-2 (tyrosinase-related protein), on the other hand, is absent from TECs and consequently TRP-2 specific CD8(+) T cells were found in both AIRE(-/-) and AIRE(+/+) mice. This study emphasizes the importance of investigating thymic expression of self-antigens prior to their inclusion in vaccination and immunotherapy strategies.  相似文献   

10.
诱导和维持T细胞耐受是免疫系统区分自我和非我的关键。自身免疫调节因子(autoimmune regulator,AIRE)作为转录因子,在胸腺髓质上皮细胞中可驱动一系列组织特异抗原基因的表达,从而在诱导中枢免疫耐受的过程中发挥重要作用。外周免疫耐受的机制复杂一些,清除耐受是其重要机制之一。外周淋巴结的基质细胞可表达部分组织特异抗原,递呈给T淋巴细胞,激活并最终清除它。中枢免疫耐受和外周免疫耐受机制可清除潜在的自身反应性T淋巴细胞,维持对自身组织耐受。一旦免疫耐受被打破,将发生自身免疫反应和自身免疫疾病。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号