首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The microarray gene expression markup language (MAGE-ML) is a widely used XML (eXtensible Markup Language) standard for describing and exchanging information about microarray experiments. It can describe microarray designs, microarray experiment designs, gene expression data and data analysis results. We describe RMAGEML, a new Bioconductor package that provides a link between cDNA microarray data stored in MAGE-ML format and the Bioconductor framework for preprocessing, visualization and analysis of microarray experiments. AVAILABILITY: http://www.bioconductor.org. Open Source.  相似文献   

2.
READ: RIKEN Expression Array Database   总被引:3,自引:0,他引:3       下载免费PDF全文
READ, the RIKEN Expression Array Database, is a database of expression profile data from the RIKEN mouse cDNA microarray. It stores the microarray experimental data and information, and provides Web interfaces for researchers to use to retrieve, analyze and display their data. The goals for READ are to serve as a storage site for microarray data from ongoing research in the RIKEN mouse encyclopedia project and to provide useful links and tools to decipher biologically important information. The gene information is based mainly on the fully annotated FANTOM database. READ can be accessed at http://read.gsc.riken.go.jp/. READ also provides a search tool [READ integrates gene expression neighbor (RINGENE)] for genes with similarities in expression profiling.  相似文献   

3.
The upcoming availability of public microarray repositories and of large compendia of gene expression information opens up a new realm of possibilities for microarray data analysis. An essential challenge is the efficient integration of microarray data generated by different research groups on different array platforms. This review focuses on the problems associated with this integration, which are: (1) the efficient access to and exchange of microarray data; (2) the validation and comparison of data from different platforms (cDNA and short and long oligonucleotides); and (3) the integrated statistical analysis of multiple data sets.  相似文献   

4.
Fuzzy J-Means and VNS methods for clustering genes from microarray data   总被引:4,自引:0,他引:4  
MOTIVATION: In the interpretation of gene expression data from a group of microarray experiments that include samples from either different patients or conditions, special consideration must be given to the pleiotropic and epistatic roles of genes, as observed in the variation of gene coexpression patterns. Crisp clustering methods assign each gene to one cluster, thereby omitting information about the multiple roles of genes. RESULTS: Here, we present the application of a local search heuristic, Fuzzy J-Means, embedded into the variable neighborhood search metaheuristic for the clustering of microarray gene expression data. We show that for all the datasets studied this algorithm outperforms the standard Fuzzy C-Means heuristic. Different methods for the utilization of cluster membership information in determining gene coregulation are presented. The clustering and data analyses were performed on simulated datasets as well as experimental cDNA microarray data for breast cancer and human blood from the Stanford Microarray Database. AVAILABILITY: The source code of the clustering software (C programming language) is freely available from Nabil.Belacel@nrc-cnrc.gc.ca  相似文献   

5.
Using DNA microarrays to study gene expression in closely related species   总被引:6,自引:0,他引:6  
MOTIVATION: Comparisons of gene expression levels within and between species have become a central tool in the study of the genetic basis for phenotypic variation, as well as in the study of the evolution of gene regulation. DNA microarrays are a key technology that enables these studies. Currently, however, microarrays are only available for a small number of species. Thus, in order to study gene expression levels in species for which microarrays are not available, researchers face three sets of choices: (i) use a microarray designed for another species, but only compare gene expression levels within species, (ii) construct a new microarray for every species whose gene expression profiles will be compared or (iii) build a multi-species microarray with probes from each species of interest. Here, we use data collected using a multi-primate cDNA array to evaluate the reliability of each approach. RESULTS: We find that, for inter-species comparisons, estimates of expression differences based on multi-species microarrays are more accurate than those based on multiple species-specific arrays. We also demonstrate that within-species expression differences can be estimated using a microarray for a closely related species, without discernible loss of information. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

6.
7.
MOTIVATION: Grouping genes having similar expression patterns is called gene clustering, which has been proved to be a useful tool for extracting underlying biological information of gene expression data. Many clustering procedures have shown success in microarray gene clustering; most of them belong to the family of heuristic clustering algorithms. Model-based algorithms are alternative clustering algorithms, which are based on the assumption that the whole set of microarray data is a finite mixture of a certain type of distributions with different parameters. Application of the model-based algorithms to unsupervised clustering has been reported. Here, for the first time, we demonstrated the use of the model-based algorithm in supervised clustering of microarray data. RESULTS: We applied the proposed methods to real gene expression data and simulated data. We showed that the supervised model-based algorithm is superior over the unsupervised method and the support vector machines (SVM) method. AVAILABILITY: The program written in the SAS language implementing methods I-III in this report is available upon request. The software of SVMs is available in the website http://svm.sdsc.edu/cgi-bin/nph-SVMsubmit.cgi  相似文献   

8.
In this paper we discuss some of the statistical issues that should be considered when conducting experiments involving microarray gene expression data. We discuss statistical issues related to preprocessing the data as well as the analysis of the data. Analysis of the data is discussed in three contexts: class comparison, class prediction and class discovery. We also review the methods used in two studies that are using microarray gene expression to assess the effect of exposure to radiofrequency (RF) fields on gene expression. Our intent is to provide a guide for radiation researchers when conducting studies involving microarray gene expression data.  相似文献   

9.
The MUSC DNA Microarray Database   总被引:1,自引:0,他引:1  
SUMMARY: The Medical University of South Carolina (MUSC) DNA Microarray Database is a web-accessible archive of DNA microarray data. The database was developed using the DNA microarray project/data management system, micro ArrayDB. Annotations for each DNA microarray project and associated cRNA target information are stored in a MySQL relational database and linked to array hybridization data (raw and normalized). At the discretion of investigators, data are placed into the public domain where they can be interrogated and downloaded through a web browser. In addition to serving as an online resource of gene expression data, the MUSC DNA Microarray Database is a model for other academic DNA microarray data repositories. AVAILABILITY: Browsing and downloading of MUSC DNA Microarray Database information can be done after registration at http://proteogenomics.musc.edu/pss/home.php.  相似文献   

10.
Improving missing value estimation in microarray data with gene ontology   总被引:3,自引:0,他引:3  
MOTIVATION: Gene expression microarray experiments produce datasets with frequent missing expression values. Accurate estimation of missing values is an important prerequisite for efficient data analysis as many statistical and machine learning techniques either require a complete dataset or their results are significantly dependent on the quality of such estimates. A limitation of the existing estimation methods for microarray data is that they use no external information but the estimation is based solely on the expression data. We hypothesized that utilizing a priori information on functional similarities available from public databases facilitates the missing value estimation. RESULTS: We investigated whether semantic similarity originating from gene ontology (GO) annotations could improve the selection of relevant genes for missing value estimation. The relative contribution of each information source was automatically estimated from the data using an adaptive weight selection procedure. Our experimental results in yeast cDNA microarray datasets indicated that by considering GO information in the k-nearest neighbor algorithm we can enhance its performance considerably, especially when the number of experimental conditions is small and the percentage of missing values is high. The increase of performance was less evident with a more sophisticated estimation method. We conclude that even a small proportion of annotated genes can provide improvements in data quality significant for the eventual interpretation of the microarray experiments. AVAILABILITY: Java and Matlab codes are available on request from the authors. SUPPLEMENTARY MATERIAL: Available online at http://users.utu.fi/jotatu/GOImpute.html.  相似文献   

11.
We propose a new method for identifying and validating drug targets by using gene networks, which are estimated from cDNA microarray gene expression profile data. We created novel gene disruption and drug response microarray gene expression profile data libraries for the purpose of drug target elucidation. We use two types of microarray gene expression profile data for estimating gene networks and then identifying drug targets. The estimated gene networks play an essential role in understanding drug response data and this information is unattainable from clustering methods, which are the standard for gene expression analysis. In the construction of gene networks, we use the Bayesian network model. We use an actual example from analysis of the Saccharomyces cerevisiae gene expression profile data to express a concrete strategy for the application of gene network information to drug discovery.  相似文献   

12.
13.
14.
15.
MOTIVATION: To enhance the exploration of gene expression data in a metabolic context, one requires an application that allows the integration of this data and which represents this data in a (genome-wide) metabolic map. The layout of this metabolic map must be highly flexible to enable discoveries of biological phenomena. Moreover, it must allow the simultaneous representation of additional information about genes and enzymes. Since the layout and properties of existing maps did not fulfill our requirements, we developed a new way of representing gene expression data in metabolic charts. RESULTS: ViMAc generates user-specified (genome-wide) metabolic maps to explore gene expression data. To enhance the interpretation of these maps information such as sub-cellular localization is included. ViMAc can be used to analyse human or yeast expression data obtained with DNA microarrays or SAGE. We introduce our metabolic map method and demonstrate how it can be applied to explore DNA microarray data for yeast. Availability: ViMAc is freely available for academic institutions on request from the authors.  相似文献   

16.
17.
We propose a statistical method for estimating a gene network based on Bayesian networks from microarray gene expression data together with biological knowledge including protein-protein interactions, protein-DNA interactions, binding site information, existing literature and so on. Microarray data do not contain enough information for constructing gene networks accurately in many cases. Our method adds biological knowledge to the estimation method of gene networks under a Bayesian statistical framework, and also controls the trade-off between microarray information and biological knowledge automatically. We conduct Monte Carlo simulations to show the effectiveness of the proposed method. We analyze Saccharomyces cerevisiae gene expression data as an application.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号