首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetylaminofluorene and aminofluorene modified Guo, GMP, d(GpA) and d(ApG) have been studied by circular dichroism and 1H nuclear magnetic resonance. Aminofluorene modified Guo is preferentially in the anti conformation and acetylaminofluorene modified Guo in the syn conformation. It is proposed that the anti conformation of aminofluorene modified Guo is stabilized by an intra molecular hydrogen bond between the NH group of aminofluorene residue and the 5′-OH group of the sugar. The results on the modified dinucleoside monophosphates are analyzed according to this hypothesis.  相似文献   

2.
Xie H  Yang D  Heller A  Gao Z 《Biophysical journal》2007,92(8):L70-L72
The electrochemical behavior of guanine, guanosine, and guanosine monophosphate (GMP) at redox polymer film modified indium tin oxide electrodes is examined by voltammetry and redox titration. Utilizing the redox polymer-coated electrodes as indicator electrodes, a new method for measuring the oxidation potentials, based on monitoring their catalytic oxidation by different redox polymer coated electrodes at different pH, was proposed in this work. The oxidation potentials of 0.81 V and 1.02 V versus normal hydrogen electrode were determined for guanine and guanosine/GMP under physiological conditions, the lowest oxidation potentials ever reported, to our knowledge.  相似文献   

3.
4.
Because of the widespread use of penicillins as antibacterial agents, the question of how penicillin affects the function and structure of nucleic acids becomes of biological importance. This communication reports a nuclear magnetic resonance study which shows that penicillin-G interacts with guanosine in dimethyl sulfoxide and can break the strong guanosine-cytidine pairing by forming a binary hydrogen-bonded complex of penicillin-guanosine. The binding sites in penicillin are the carboxylate and the carbonyl groups, while the NH and NH2 groups of guanosine act as hydrogen donors.  相似文献   

5.
E Hamel  J K Batra  C M Lin 《Biochemistry》1986,25(22):7054-7062
Using highly purified calf brain tubulin bearing [8-14C]guanosine 5'-diphosphate (GDP) in the exchangeable nucleotide site and heat-treated microtubule-associated proteins (both components containing negligible amounts of nucleoside diphosphate kinase and nonspecific phosphatase activities), we have found that a significant proportion of exchangeable-site GDP in microtubules can be incorporated directly during guanosine 5'-triphosphate (GTP) dependent polymerization of tubulin, without an initial exchange of GDP for GTP and subsequent GTP hydrolysis during assembly. The precise amount of GDP incorporated directly into microtubules is highly dependent on specific reaction conditions, being favored by high tubulin concentrations, low GTP and Mg2+ concentrations, and exogenous GDP in the reaction mixture. Minimum effects were observed with changes in reaction pH or temperature, changes in concentration of microtubule-associated proteins, alteration of the sulfonate buffer, or the presence of a calcium chelator in the reaction mixture. Under conditions most favorable for direct GDP incorporation, about one-third of the GDP in microtubules is incorporated directly (without GTP hydrolysis) and two-thirds is incorporated hydrolytically (as a consequence of GTP hydrolysis). Direct incorporation of GDP occurs in a constant proportion throughout elongation, and the amount of direct incorporation probably reflects the rapid equilibration of GDP and GTP at the exchangeable site that occurs before the onset of assembly.  相似文献   

6.
Rat liver cytosolic phosphoenolpyruvate carboxykinase is inactivated by incubation with 0.84 mM 5′-p-fluorosulfonylbenzoyl guanosine, but is not appreciably affected by the adenosine analogue, 5′-p-fluorosulfonylbenzoyl adenosine, in correspondance with the known nucleotide specificity of this enzyme. Marked protection against inactivation by 5′-p-fluorosulfonylbenzoyl guanosine is provided (either in the presence or absence of divalent metal cation) by GTP or GDP but not by ATP or phosphoenolpyruvate. The inactivation appears to be due to covalent reaction since radioactive reagent remains associated with the enzyme after extensive dialysis and gel filtration on Sephadex G-25. These results are consistent with affinity labeling of the nucleotide binding site of phosphoenolpyruvate carboxykinase by the guanosine nucleotide analogue 5′-p-fluorosulfonylbenzoyl guanosine.  相似文献   

7.
Central nervous system (CNS) astrocytes release guanosine extracellularly, that exerts trophic effects. In CNS, extracellular guanosine (GUO) stimulates mitosis, synthesis of trophic factors, and cell differentiation, including neuritogenesis, is neuroprotective, and reduces apoptosis due to several stimuli. Specific receptor-like binding sites for eGUO in the nervous system may mediate its effects through both MAP kinase and PI3-kinase signalling pathways. Extracellular guanine (eGUA) also exerts several effects; the trophic effects of eGUO are likely regulated by conversion of eGUO to eGUA by a membrane located purine nucleoside phosphorylase (ecto-PNP) and by conversion of eGUA to xanthine by guanine deaminase.  相似文献   

8.
9.
Using purine auxotrophic strains of Escherichia coli with additional genetic lesions in the pathways of interconversion and salvage of purine compounds, we demonstrated the in vivo function of guanosine kinase and inosine kinase. Mutants with increased ability to utilize guanosine were isolated by plating cells on medium with guanosine as the sole purine source. These mutants had altered guanosine kinase activity and the mutations were mapped in the gene encoding guanosine kinase, gsk. Some of the mutants had acquired an additional genetic lesion in the purine de novo biosynthetic pathway, namely a purF, a purL or a purM mutation. A revised map location of the gsk gene is presented and the gene order established as proC-acrA-apt-adk-gsk-purE.  相似文献   

10.
Cultures of Myxococcus xanthus develop multicellular fruiting bodies when starved for carbon and nitrogen sources on an agar surface. Under these conditions of severe starvation, cultures rapidly accumulated a compound identified as guanosine tetraphosphate by chromatographic migration of the compound and of its major acid and alkali breakdown products. The accumulation of guanosine tetraphosphate was reduced in the presence of tetracycline, indicating that it may be synthesized by mechanisms similar to those of Escherichia coli. The guanosine tetraphosphate level was also reduced in starved cultures of a mutant unable to fruit normally, although it has been determined whether the defect in guanosine tetraphosphate accumulation is responsible for the inability to fruit. Induction of spores by glycerol addition led to transient increases in both guanosine tetraphosphate and guanosine pentaphosphate at a stage following most cell shortening, but before spores had acquired full refractility.  相似文献   

11.
12.
13.
The tetrabutylammonium salt of guanosine 5'-monophosphate (5'-GMP) dissolves in DMSO-d6 forming aggregated species which exhibit some properties of reverse micelles. 1H NOESY experiments show that the 5'-GMP adopts the syn conformation about the glycosidic bond. Molecular mechanics calculations reveal a stable structure with this conformation in which the phosphate group and the amino group of the base are in close enough proximity to hydrogen bond. In contrast inosine 5'-monophosphate in DMSO-d6, which has no NH2 group for hydrogen bond stabilization of the syn conformation, is shown by NMR to have the anti structure. Guanosine in DMSO-d6 behaves differently from 5'-GMP. Guanosine adopts the anti conformation and forms a symmetric dimer via hydrogen bonding between the N3 and NH2 of the bases.  相似文献   

14.
15.
Reaction of guanosine with ethylating agents   总被引:10,自引:0,他引:10  
B Singer 《Biochemistry》1972,11(21):3939-3947
  相似文献   

16.
The hydrolysis of cGMP by phosphodiesterase was conducted in [18O]water to determine the site of bond cleavage and the stoichiometry of 18O incorporation into 5'-GMP. Three different forms of phosphodiesterase including a calmodulin-calcium-dependent enzyme in its basal and activated states were examined. The hydrolysis of cGMP catalyzed by each of the forms of phosphodiesterase proceeded with incorporation of 1 18O atom recoverable in the phosphate moiety of each molecule of 5'-GMP generated. No molecular species of phosphate deriving from the 5'-GMP generated containing two or three 18O were detectable. These results indicate that the phosphodiesterase-catalyzed hydrolysis of cGMP proceeds by nucleophilic substitution at phosphorus resulting in P-O bond cleavage. The stoichiometry of 18O incorporation indicates that the reaction proceeds without phosphate-water oxygen exchange when the hydrolytic reaction is catalyzed by diverse forms of phosphodiesterase in the basal or activated state. These considerations of the phosphodiesterase reaction help to establish the validity of monitoring the rate of enzyme-catalyzed hydrolysis of cGMP as a function of the rate of 18O-labeling of the phosphate of 5'-GMP when the reaction proceeds in a medium of predetermined 18O enrichment.  相似文献   

17.
A means of preparative enzymatic synthesis of guanosine tetraphosphate (ppGpp), guanosine pentaphosphate (pppGpp), and related derivatives is deseribed. The Escherichia coli ribosomes can be recovered, stored, and used repeatedly as a source of synthetic activity. The procedure described affords a relatively simple means of synthesizing gram amounts of these nucleotides as well as some derivatives such as the β-γ methylenyl derivative of guanosine pentaphosphate (peppGpp).  相似文献   

18.
Acid-soluble extracts of dormant embryos of the brine shrimp, Artemia salina, contain small amounts of two previously undescribed dinucleotides which we have identified to be guanosine 5'-diphospho-5'-guanosine and guanosine 5'-triphospho-5'-adenosine. These compounds each comprise about 0.03% of the dry weight of the encysted embryos and are related chemically to guanosine 5'-triphospho-5'-guanosine and guanosine 5'-tetraphospho-5'-guanosine which have been shown previously to be major constituents of the nucleotide pool of Artemia cysts. These new dinucleotides were purified from perchloric acid extracts of dormant cysts by ion exchange column chromatography and identified by means of chemical, spectrophotometric, and enzymatic analyses compared to commercially available compounds. The possible role of these new compounds in nucleotide and nucleic acid metabolism in Artemia embryos is discussed.  相似文献   

19.
Evidence is presented for complexation of guanosine 5-monophosphate 2-methylimidazolide (2-MeImpG) with polycytidylate (poly(C)) at pH 8.0 and 23°C in the presence of 1.0 M NaCl and 0.2 M MgCl2 in water. The association of 2-McImpG with poly(C) was investigated using UV-vis spectroscopy as well as by monitoring the kinetics of the nucleophilic substitution reaction of the imidazole moiety by amines. The results of both methods are consistent with moderately strong poly(C) · 2-McImpG complexation and the spectrophotometric measurements allowed the construction of a binding isotherm with a concentration of 2-McImpG equal to 5.55 ± 0.15 mM at half occupancy. UV spectroscopy was employed to establish the binding of other guanosine derivatives on poly(C). These derivatives are guanosine 5-monophosphate (5GMP), guanosine 5monophosphate imidazolide (ImpG), and guanosine 5monophosphate morpholidate (morpG). Within experimental error these guanosine derivatives exhibit the same affinity for poly(C) as 2-McImpG.  相似文献   

20.
In this paper, we report the first modification of guanosine with a ferrocene (Fc) group using Stille and Sonogashira cross-coupling reactions of 8-bromoguanosine and tri-n-butylstannyl ferrocene or ethynylferrocene, respectively. The two resulting Fc-guanosine conjugates were fully characterized spectroscopically and their electrochemical properties were characterized cyclic voltammetry showing more anodic oxidations due to electronic coupling between the Fc group and the nucleobase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号