首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A dimeric copper complex of the unsubstituted pyridoxal thiosemicarbazone (H(2)L), [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O, previously tested on Friend murine cell lines has been recently resynthesized to evaluate its behavior on different murine and human leukemic cell lines and has been compared, in vitro and in vivo, with its monomeric counterpart [Cu(H(2)L)(OH(2))Cl]Cl. On TS/A murine adenocarcinoma cell line in vitro, both compounds significantly inhibit cell proliferation at micromolar concentrations, although the dimeric compound is more active. Despite this cytotoxicity they lack in vivo activity on TLX5 lymphoma. The unsubstituted dimeric [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O induces apoptosis on CEM and U937 human cell lines, with IC(50) concentrations of 1.2 x 10(-5) and 6.7 x 10(-6) M, respectively, but it is inactive on K562. Moreover, it alters significantly the cell cycle of U937 and CEM lines and decreases the telomerase activity of U937. To verify if other dimeric copper complexes show relevant biological activity new complexes with N-substituted pyridoxal thiosemicarbazones have been synthesized and characterized using spectroscopic techniques. Three of them, namely [Cu(Me(2)-HL)Cl](2).6H(2)O (Me(2)-H(2)L=pyridoxal N1,N1-dimethylthiosemicarbazone) (1), [Cu(MeMe-HL)Cl](2)Cl(2).4H(2)O (MeMe-HL=pyridoxal N1,N2-dimethylthiosemicarbazone) (2), [Cu(Et-H(2)L)Cl](2)Cl(2).2H(2)O (Et-H(2)L=pyridoxal N1-ethylthiosemicarbazone) (3), were also characterized by X-ray diffractometry. These complexes are dimeric and all three present a square pyramidal coordinative geometry with the ligand showing an SNO tridentate behavior. Their biological activities have been tested in vitro on U937, CEM and K562 cell lines to ascertain their effectiveness in comparison to the corresponding unsubstituted complex [[Cu(HL)(OH(2))](2)]Cl(2).2H(2)O. Compound 1 shows weak proliferation inhibition on all three cell lines, but it does not induce apoptosis and it does not inhibit telomerase activity, compound 2 is not effective at low concentration and is toxic at higher doses; compound 3 inhibits CEM cell growth better than complex 1 but it does not exert any other biological effect.  相似文献   

2.
Nickel, copper, and zinc complexes of isatin (H(2)L(1)) and N-methylisatin 3-picolinoyl hydrazone (HL(2)), were synthesized and characterized by means of spectroscopic techniques. H(2)L(1) and a nickel complex [Ni(L(2))(2)].2C(6)H(14) were also characterized by X-ray diffractometry. Biological studies, carried out in vitro on human leukemic cell lines TOM 1 and NB4, have shown that both ligands and some copper and nickel complexes are active in inhibiting cell proliferation. Compounds H(2)L(1), Cu(HL(1))(2).2H(2)O, Zn(HL(1))(2).2H(2)O inhibit DNA synthesis and act constantly with time between 0 and 72 h. The cell cycle analysis has highlighted a reduction in the number of cells in phase S of about 40%. The same compounds present only a precocious action on cell line NB4 and therefore their activity is cell target specific.  相似文献   

3.
Stability constants of iron(III), copper(II), nickel(II) and zinc(II) complexes of salicylhydroxamic acid (H2Sha), anthranilic hydroxamic acid (HAha) and benzohydroxamic acid (HBha) have been determined at 25.0 degrees C, I=0.2 mol dm(-3) KCl in aqueous solution. The complex stability order, iron(III) > copper(II) > nickel(II) approximately = zinc(II) was observed whilst complexes of H2Sha were found to be more stable than those of the other two ligands. In the preparation of ternary metal ion complexes of these ligands and 1,10-phenanthroline (phen) the crystalline complex [Cu(phen)2(Cl)]Cl x H2Sha was obtained and its crystal structure determined. This complex is a model for hydroxamate-peroxidase inhibitor interactions.  相似文献   

4.
A series of organotin compounds obtained from the reaction of 2,6-diacetylpyridine nicotinoyl- and isonicotinoylhydrazones with tri- and diorganotin chlorides was investigated. The IR and 119Sn NMR spectroscopic characterization of all the compounds is reported, together with the x-ray crystal structure of [SnEt2(H2dapin')]2[SnEt2Cl3]Cl3.2H2O (H2dapin' = 2,6-diacetylpyridine bis(isonicotinoylhydrazone)). The main feature in this compound is the presence of a tin atom in both the complex ionic units. The coordination polyhedron is a pentagonal bipyramid in the cation and a trigonal bipyramid in the anion. Results are discussed concerning the in vitro evaluation of antimicrobial properties and genotoxic potential of the compounds described. In all cases the complexes show a reduced antimicrobial activity as compared to that of the corresponding organotin compound. Genotoxic properties of the ligands, detected in the Ames test, disappear in the complexes.  相似文献   

5.
Nine coordination compounds of Cu(II) and Co(II) with Ciprofloxacin (HCp) and Enoxacin (HEx) as ligands have been prepared and characterized. Single crystal structural determinations of [Cu(HCp)2(ClO4)2].6H2O (1) and [Co(HEx)2(Ex)]Cl.2CH(3)OH.12H2O (4) are reported. The crystal of 1 is composed of [Cu(HCp)2(ClO4)2] units with the two perchlorate anions semicoordinated, and uncoordinated water molecules. The copper ion, at a crystallographic inversion centre, is in a tetragonally distorted octahedral environment. The structure of 4 consists of cationic monomeric [Co(HEx)2(Ex)]+ units, chloride anions, and uncoordinated methanol and water molecules. The complex is six-coordinate, with a slightly distorted octahedral environment around the metal centre. Some complexes of ciprofloxacin and enoxacin were screened for their activity against several bacteria, showing activity similar to that of the corresponding free ligands. All compounds tested were more active against Gram-negative bacteria than against Gram-positive bacteria. Ciprofloxacin hydrochloride and its complexes were more active than enoxacin and its complexes. In addition, the bactericidal studies against Staphylococcus aureus ATCC 25923 reveal that one complex exhibits the "paradoxical effect" (diminution in the number of bacteria killed at high drug concentration), which has been described and related to the mechanism of action of quinolones, but three other complexes do not, suggesting different mechanisms of bactericidal action. The ability of Cu(HCp)2(NO3)2.6H2O to cleave DNA has been determined. The results show that the complex behaves as an efficient chemical nuclease with ascorbate/hydrogen peroxide activation. Mechanistic studies using different inhibiting reagents reveal that hydroxyl radicals are involved in the DNA scission process mediated by this compound.  相似文献   

6.
The synthesis, characterization and biological activity of the first zinc(II) complexes with potent inhibitors of cyclin-dependent kinases (CDKs) derived from 6-benzylaminopurine are described. Based on the results following from elemental analyses, infrared, NMR and ES+MS (electrospray mass spectra in the positive ion mode) spectroscopies, conductivity data, thermal analysis and X-ray structures, the tetrahedral Zn(II) complexes of the compositions [Zn(Olo)Cl(2)](n) (1), [Zn(iprOlo)Cl(2)](n) (2), [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been prepared, where Olo=2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine (Olomoucine), iprOlo=2-(2-hydroxyethylamino)-6-benzylamino-9-isopropylpurine (i-propyl-Olomoucine), Boh=2-(3-hydroxypropylamino)-6-benzylamino-9-isopropylpurine (Bohemine). The 1D-polymeric chain structure for [Zn(Olo)Cl(2)](n) (1) as well as the monomeric one for [Zn(BohH(+))Cl(3)] x H(2)O (3) and [Zn(iprOloH(+))Cl(3)] x H(2)O (4) have been revealed unambiguously by single crystal X-ray analyses. The 1D-polymeric chain of 1 consists of Zn(Olo)Cl(2) monomeric units in which the Zn(II) ion is coordinated by two chlorine atoms and one oxygen atom of the 2-hydroxyethylamino group of Olomoucine. The next monomeric unit is bonded to Zn(II) through the N7 atom of a purine ring. Thus, each of Zn(II) ions is tetrahedrally coordinated and a ZnCl(2)NO chromophore occurs in the complex 1. The complexes 3 and 4 are mononuclear species with a distorted tetrahedral arrangement of donor atoms around the Zn(II) ion with a ZnCl(3)N chromophore. The corresponding CDK inhibitor, i.e., both Boh and iprOlo, is coordinated to Zn(II) via the N7 atom of the purine ring in 3 and 4. The cytotoxicity of the zinc(II) complexes against human melanoma, sarcoma, leukaemia and carcinoma cell lines has been determined as well as the inhibition of the CDK2/cyclin E kinase. A relationship between the structure and biological activity of the complexes is also discussed.  相似文献   

7.
New polymeric copper(II) complexes with two tridentate ONS thiosemicarbazone ligands containing substituted pyrazolone moiety were synthesized and characterized by means of spectroscopic, electrochemical and crystallographic techniques. While both ligands exist as different tautomers in the solid state and DMSO-d6 solution, Cu(II) ion coordinates the ligands from the same tautomeric form with square-pyramidal geometry around each Cu atom. In the crystal structures, the copper(II) complex cation forms polymeric chains {[Cu(L)Cl]+}n with a bridging chlorine atom. One of the complexes was found to have a significantly higher cytotoxic potential in comparison with cisplatin in inhibition of several cell lines (HL60, REH, C6, L929 and B16). The results obtained on the basis of flow cytometry indicated that apoptosis could be possible mechanism of cell death.  相似文献   

8.
Several cisplatin analogues of ethylenediamine-derived ligands containing alcohol, carboxylic acid and acetate substituents have been prepared and characterised. Oxidation of some of these square planar platinum(II) complexes using aqueous hydrogen peroxide gave octahedral platinum(IV) complexes, containing trans hydroxo ligands. Acetylation of the hydroxo ligands was achieved by reaction with acetic anhydride, giving complexes which are analogues of the antitumour drug, JM-216. Oxidation of the complex [Pt(H2L4)Cl2], where H2L4 is ethylenediamine-N,N'-diacetic acid, with H2O2 gave the platinum(IV) complex [PtL4Cl2].H2O in which L4 is tetradentate as shown by a crystal and molecular structure. This complex was previously reported to be [Pt(HL4)(OH)Cl2] in which HL4 is tridentate. Several of the complexes were tested for antitumour activity against five human ovarian carcinoma cell lines. IC50 values range from 4.0 microM for cis,trans-PtCl2(OH)2(NH2CH2CH2NHCH2CH2OH) against the CH1 cell line to >25 microM indicating moderate to low activity relative to other platinum complexes.  相似文献   

9.
Twelve zinc(II) complexes with thiosemicarbazone and semicarbazone ligands were prepared and characterized by elemental analysis, thermogravimetric and differential thermal analysis (TG/DTA), FT-IR and 1H and 13C NMR spectroscopy. Seven three-dimensional structures of zinc(II) complexes were determined by single-crystal X-ray analysis. Their antimicrobial activities were evaluated by MIC against four bacteria (B. subtilis, S. aureus, E. coli and P. aeruginosa), two yeasts (C. albicans and S. cerevisiae) and two molds (A. niger and P. citrinum). The 5- and 6-coordinate zinc(II) complexes with a tridentate thiosemicarbazone ligand (Hatsc), ([Zn(atsc)(OAc)](n) 1, [Zn(Hatsc)(2)](NO(3))(2).0.3H(2)O 2, [ZnCl(2)(Hatsc)] 3 and [Zn(SO(4))(Hatsc)(H(2)O)].H(2)O 4 [Hatsc=2-acetylpyridine(thiosemicarbazone)]), showed antimicrobial activities against test organisms, which were different from those of free ligands or the starting zinc(II) compounds. Especially, complex 2 showed effective activities against P. aeruginosa, C. albicans and moderate activities against S. cerevisiae and two molds. These facts are in contrast to the results that the 5- or 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridine-4N-morpholinethiosemicarbazone, ([Zn(mtsc)(2)].0.2EtOH 5, the previously reported catena-poly [Zn(mtsc)-mu-(OAc-O,O')](n) and [Zn(NO(3))(2)(Hmtsc)] [Hmtsc=2-acetylpyridine (4N-morpholyl thiosemicarbazone)]), showed no activities against the test microorganisms. The 5- and 6-coordinate zinc(II) complexes with a tridentate 2-acetylpyridinesemicarbazone, ([Zn(OAc)(2)(Hasc)] 6 and [Zn(Hasc)(2)](NO(3))(2) 7 [Hasc=2-acetylpyridine(semicarbazone)]), showed no antimicrobial activities against bacteria, yeasts and molds. Complex [ZnCl(2)(Hasc)] 8, which was isostructural to complex 3, showed modest activity against Gram-positive bacterium, B. subtilis. The 1:1 complexes of zinc(II) with pentadentate thiosemicarbazone ligands, ([Zn(dmtsc)](n) 9 and [Zn(datsc)](n) 10 [H(2)dmtsc=2,6-diacetylpyridine bis(4N-morpholyl thiosemicarbazone) and H(2)datsc=2,6-diacetylpyridine bis(thiosemicarbazone)]), did not inhibit the growth of the test organisms. On the contrary, 7-coordinate zinc(II) complexes with one pentadentate semicarbazone ligand and two water molecules, ([Zn(H(2)dasc)(H(2)O)(2)](OAc)(2).5.3H(2)O 11 and [Zn(H(2)dasc)(H(2)O)(2)](NO(3))(2).H(2)O 12 [H(2)dasc=2,6-diacetylpyridine bis(semicarbazone)]), showed modest to moderate activities against bacteria. Based on the X-ray structures, the structure-activity correlation for the antimicrobial activities was elucidated. The zinc(II) complexes with 4N-substituted ligands showed no antimicrobial activities. In contrast to the previously reported nickel(II) complexes, properties of the ligands such as the ability to form hydrogen bonding with a counter anion or hydrated water molecules or the less bulkiness of the 4N moiety would be a more important factor for antimicrobial activities than the coordination number of the metal ion for the zinc(II) complexes.  相似文献   

10.
Three new complexes of transition metals as copper, nickel and cobalt with 5-formyluracil thiosemicarbazone (H3ut) have been synthesised and characterised by single-crystal X-ray diffraction. In all compounds the ligand behaves as SNO terdentate. In the copper complex the coordination geometry is square pyramidal with the ligand lying on the basal plane and two water molecules that complete the metal environment, the nickel compound is surrounded by six donor atoms (three of the ligand, two water oxygen atoms and a chlorine atom) in an octahedral fashion, and cobalt also shows an octahedral geometry but determined only by two terdentate ligand molecules. These three compounds have been tested on human leukemic cell lines K562 and CEM. The nickel and cobalt complexes have demonstrated low activity in cell growth, while the copper complex that is more active has been tested also on a third leukemic human cell line (U937), but it was not able to induce apoptosis on all cell lines.  相似文献   

11.
Four dipeptide complexes of the type [PtX(2)(dipeptide)] x H(2)O (X=Cl, I, dipeptide=l-methionylglycine, l-methionyl-l-leucine) were prepared. The complexes were characterized by (1)H, (13)C, (195)Pt NMR and infrared spectroscopy, DTG and elemental analysis. From the infrared, (1)H and (13)C NMR spectroscopy it was concluded that dipeptides coordinate bidentately via sulfur and amine nitrogen donor atoms. Confirmed with (13)C and (195)Pt NMR spectroscopy, each of the complexes exists in two diastereoisomeric forms, which are related by inversion of configuration at the sulfur atom. The (1)H NMR spectrum for the platinum(II) complex with l-methionylglycine and chloro ligands exhibited reversible, intramolecular inversion of configuration at the S atom; DeltaG( not equal)=72 kJ mol(-1) at coalescence temperature 349 K was calculated. In vitro cytotoxicity studies using the human tumor cell lines liposarcoma, lung carcinoma A549 and melanoma 518A2 revealed considerable activity of the platinum(II) complex with l-methionylglycine and chloro ligands. Further in vitro cytotoxic evaluation using human testicular germ cell tumor cell lines 1411HP and H12.1 and colon carcinoma cell line DLD-1 showed moderate cytotoxic activity for all platinum(II) complexes only in the cisplatin-sensitive cell line H12.1. Platinum uptake studies using atomic absorption spectroscopy indicated no relationship between uptake and activity. Potential antitumoral activity of this class of platinum(II) complexes is dependent on the kind of ligands as well as on tumor cell type.  相似文献   

12.
The reaction of copper(II) complexes supported by a series of beta-diketiminate ligands ((R1,R2)L, [(Dipp)N-C(R(2))-C(R(1))-C(R(2))-N(Dipp)](-), Dipp=2,6-diisopropylphenyl; see ) and H(2)O(2) has been examined spectroscopically at a low temperature. The beta-diketiminatocopper(II) complexes with R(2)=H (no substituent on the beta-carbon) provided a copper-oxygen intermediate that exhibited the same spectroscopic features as those of the bis(mu-oxo)dicopper(III) complex generated by the reaction of corresponding beta-diketiminatocopper(I) complex and O(2). On the other hand, the beta-diketiminatocopper(II) complexes with methyl substituent on the beta-carbon (R(2)=Me) did not produce such an intermediate in the same reaction. The beta-diketiminatocopper(II) complexes carrying an electron-withdrawing substituent on the alpha-carbon (R(1)=NO(2) or CN) but no beta-substituent (R(2)=H) exhibited a high catalytic activity in the oxygenation reaction of alkanes with H(2)O(2). Mechanism of the catalytic oxygenation reaction as well as the substituent effects of the ligands on the copper(II)-H(2)O(2) reactivity is discussed.  相似文献   

13.
A new quinolone-metal complex was prepared by a hydrothermal reaction in the presence of L-histidine that served as a reducing agent for a metal. The title compound [Cu(II)(cfH)(2)(Cu(I)Cl(2))(2)] (1) is a mixed-valence Cu(II)-Cu(I) complex, which contains two ciprofloxacin (cfH) molecules bonded to the central copper(II) atom and two almost planar [Cu(I)Cl(2)](-) moieties. Both metal centers are connected through two bridging atoms (chloride and quinolone oxygen). The electrochemical methods (differential-pulse polarography and cyclovoltammetric measurements) confirmed the presence of various copper-ciprofloxacin complex species in aqueous solution at low concentrations used in biological activity tests and also indicated that the equilibria in this system are very complex. The biological properties of the title compound and some previously isolated copper-ciprofloxacin complexes ([Cu(cfH)(2)Cl(2)].6H(2)O (2) and [CuCl(cfH)(phen)]Cl.2H(2)O (3)) (phen=1, 10-phenantroline) were determined and compared. The DNA gyrase inhibition tests and antibacterial activity tests have shown that the effect of copper complexes is comparable to that of free quinolone. Additionally, an interesting DNA cleavage activity of the title compound was also discovered.  相似文献   

14.
15.
A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.  相似文献   

16.
The coordination compounds of streptomycin (St), Co2(St)Cl4.13H2O (2), Co2(St)(NO3)4.7H2O (3), Ni2(St)Cl4.14H2O (4), Ni2(St)(NO3)4.14H2O (5), Cu2(St)Cl4.6H2O (6), and Ca(St)Cl2.8H2O (7) have been synthesized by the reaction of streptomycin sulfate (1) with three equivalents of the corresponding inorganic salt. The compounds (2)-(7) were characterized by electronic spectroscopy (in the solid state and in solution) by conductivity measurements and by 13C NMR in solution. The reaction of streptomycin with CuCl2 in water hydrolyzed the molecule giving the copper complex of the streptidine fraction (Std), Cu(Std)Cl.H2O (8). This compound was characterized by the same techniques. Detailed x-ray diffraction and 13C NMR studies of streptidine sulfate (9) were carried out.  相似文献   

17.
The interactions of potassium tetrachloropalladate(II) with the B6 vitamins pyridoxal, pyridoxine, and pyridoxamine in 1:1 molar ratio have been studied. From DMF solutions, the ionic trichloro (pyridoxal or pyridoxine) palladates(II) were isolated. Pyridoxamine, on the other hand, in aqueous solutions gave the dimeric complex bis [mu-chloro-pyridoxaminato-palladium(II)]. In the first two complexes, the ligands coordinated to palladium through their pyridine nitrogen while, in the last one, pyridoxamine acted as a chelating ligand through its phenolic oxygen and aminomethyl nitrogen. All three complexes reacted with nucleosides, yielding the complexes [Pd(PL)(Nucl)Cl2], [Pd(PN)(Nucl)Cl2], and [Pd(PM-H+)(Nucl)Cl], respectively. Those complexes with one ionizable N(1)H imino proton underwent deprotonation, and the new mixed ligand complexes [Pd(PL)(Nucl-H+)Cl], [Pd(PN)(Nucl-H+)], and [Pd(PM-H+)(Nucl-H+)] were formed. In all mixed ligand complexes, the B6 vitamins maintained their coordination modes. The nucleosides, on the other hand, exhibited their usual coordination sites, i.e., in the nondeprotonated complexes, purine nucleosides coordinated only through their N7 atom. In the deprotonated complexes, they acted as bidentate ligands and coordinated through their N7 and O6 atoms. All complexes were characterized with elemental analyses, conductivity measurements, and various spectroscopic techniques.  相似文献   

18.
The compounds {[Cu(CMP)(Him)].H(2)O}(n) (I) and [Cu(CMP)(crea)H(2)O].3H(2)O (II) were synthesized and characterized by X-ray diffraction, thermal, spectral and magnetic methods (CMP=N-carboxymethyl-;l-prolinato(2-) ion, Him=imidazole and crea=creatinine). Appropriate structural comparison with other compounds such as {[Cu(CMP)(H(2)O)].H(2)O}(n), [Cu(crea)(2)Cl(2)] and [Cu(dipeptide)(crea)(H(2)O)(x)].nH(2)O (x=0 or 1) have been made in order to prove that crea can act as an imidazole-like ligand (because it is able to promote the same fac- to mer-CMP tridentate conformational change in copper(II) complexes) as well as to discuss the interligand interactions which control the 'Cu(CMP) complex-crea, molecular recognition processes. In contrast to that found in related ternary complexes, we have concluded that direct CMP-crea interligand interactions are missing in the Cu-CMP-crea complex due to the inappropriate correspondence between the donor and/or acceptor H-bonding properties of these ligands. CMP can only act as H-acceptor by its two terminal carboxylate group, and crea can display H-donor and H-acceptor roles by its exocyclic -NH(2) and O moieties, respectively. That promotes the reinforcement of the Cu-N(crea) bond by a bridge -N-H(crea)...O(aqua) (2.867(3)A, 176.4 degrees).  相似文献   

19.
Three hydrazone ligands, H2L1-H2L3, made from salicylaldehyde and ibuprofen- or naproxen-derived hydrazides, were prepared and transformed into the corresponding copper(II) complexes [Cu(II)L1] x H2O, [Cu(II)L2], and [(Cu(II))2(L3)2] x H2O x DMF (Scheme). The X-ray crystal structure of the last-mentioned complex was solved (Fig. 1), showing a square-planar complexation geometry, and the single units were found to form a one-dimensional chain structure (Fig. 2). The interactions of these complexes with CT-DNA were studied by different techniques, indicating that they all bind to DNA by classical and/or non-classical intercalation modes.  相似文献   

20.
Six new cyclic ligands derived from alpha-ketoglutaric acid thiosemicarbazone (H(3)ct) and their zinc complexes have been synthesized and characterized by analytical and spectroscopic (IR and NMR) studies. The X-ray structures of ligands Me-H(2)ct(C) (1), Allyl-H(2)ct(c) (3) and of complex [Zn(Me-Hct(C))(2)(OH(2))(2)].2H(2)O (7) have been determined. In complex (7) the zinc atom lies on a twofold axis and is surrounded in a tetrahedral coordination by two water molecules and two carboxylic oxygen donor atoms from the ligand. DNA titration in the UV-visible region and thermal denaturation have been employed to determine the details of DNA binding for the studied compounds. Studies of nuclease activity have also been performed with all our compounds through a gel electrophoresis experiment using plasmid pBR322 showing that no DNA breakings take place. Tests in vitro on human leukemia cell line U937 have been carried out on cell growth inhibition where solubility of the compounds allowed the experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号