首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
TAB2 and TAB3 activate the Jun N‐terminal kinase and nuclear factor‐κB pathways through the specific recognition of Lys 63‐linked polyubiquitin chains by its Npl4 zinc‐finger (NZF) domain. Here we report crystal structures of the TAB2 and TAB3 NZF domains in complex with Lys 63‐linked diubiquitin at 1.18 and 1.40 Å resolutions, respectively. Both NZF domains bind to the distal ubiquitin through a conserved Thr‐Phe dipeptide that has been shown to be important for the interaction of the NZF domain of Npl4 with monoubiquitin. In contrast, a surface specific to TAB2 and TAB3 binds the proximal ubiquitin. Both the distal and proximal binding sites of the TAB2 and TAB3 NZF domains recognize the Ile 44‐centred hydrophobic patch on ubiquitin but do not interact with the Lys 63‐linked isopeptide bond. Mutagenesis experiments show that both binding sites are required to enable binding of Lys 63‐linked diubiquitin. We therefore propose a mechanism for the recognition of Lys 63‐linked polyubiquitin chains by TAB2 and TAB3 NZF domains in which diubiquitin units are specifically recognized by a single NZF domain.  相似文献   

2.
Ubiquitin (Ub) functions in many different biological pathways, where it typically interacts with proteins that contain modular Ub recognition domains. One such recognition domain is the Npl4 zinc finger (NZF), a compact zinc-binding module found in many proteins that function in Ub-dependent processes. We now report the solution structure of the NZF domain from Npl4 in complex with Ub. The structure reveals that three key NZF residues (13TF14/M25) surrounding the zinc coordination site bind the hydrophobic 'Ile44' surface of Ub. Mutations in the 13TF14/M25 motif inhibit Ub binding, and naturally occurring NZF domains that lack the motif do not bind Ub. However, substitution of the 13TF14/M25 motif into the nonbinding NZF domain from RanBP2 creates Ub-binding activity, demonstrating the versatility of the NZF scaffold. Finally, NZF mutations that inhibit Ub binding by the NZF domain of Vps36/ESCRT-II also inhibit sorting of ubiquitylated proteins into the yeast vacuole. Thus, the NZF is a versatile protein recognition domain that is used to bind ubiquitylated proteins during vacuolar protein sorting, and probably many other biological processes.  相似文献   

3.
At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63‐linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48‐linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin‐binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF‐κB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.  相似文献   

4.
The nuclear pore complex is the gateway for selective traffic between the nucleus and cytoplasm. To learn how building blocks of the pore can create specific docking sites for transport receptors and regulatory factors, we have studied a zinc finger module present in multiple copies within the nuclear pores of higher eukaryotes. All four zinc fingers of human Nup153 were found to bind the small GTPase Ran with dissociation constants ranging between 5 and 40 mum. In addition a fragment of Nup153 encompassing the four tandem zinc fingers was found to bind Ran with similar affinity. NMR structural studies revealed that a representative Nup153 zinc finger adopts the same zinc ribbon structure as the previously characterized Npl4 NZF module. Ran binding was mediated by a three-amino acid motif (Leu(13)/Val(14)/Asn(25)) located within the two zinc coordination loops. Nup153 ZnFs bound GDP and GTP forms of Ran with similar affinities, indicating that this interaction is not influenced by a nucleotide-dependent conformational switch. Taken together, these studies elucidate the Ran-binding interface on Nup153 and, more broadly, provide insight into the versatility of this zinc finger binding module.  相似文献   

5.
Meyer HH  Wang Y  Warren G 《The EMBO journal》2002,21(21):5645-5652
The multiple functions of the p97/Cdc48p ATPase can be explained largely by adaptors that link its activity to different cellular pathways, but how these adaptors recognize different substrates is unclear. Here we present evidence that the mammalian adaptors, p47 and Ufd1-Npl4, both bind ubiquitin conjugates directly and so link p97 to ubiquitylated substrates. In the case of Ufd1-Npl4, which is involved in endoplasmic reticulum (ER)-associated degradation and nuclear envelope reassembly, binding to ubiquitin is mediated through a putative zinc finger in Npl4. This novel domain (NZF) is conserved in metazoa and is both present and functional in other proteins. In the case of p47, which is involved in the reassembly of the ER, the nuclear envelope and the Golgi apparatus, binding is mediated by a UBA domain. Unlike Ufd1-Npl4, it binds ubiquitin only when complexed with p97, and binds mono- rather than polyubiquitin conjugates. The UBA domain is required for the function of p47 in mitotic Golgi reassembly. Together, these data suggest that ubiquitin recognition is a common feature of p97-mediated reactions.  相似文献   

6.
7.
Ubiquitin chains modify a major subset of the proteome, but detection of ubiquitin signaling dynamics and localization is limited due to a lack of appropriate tools. Here, we employ ubiquitin-binding domain (UBD)-based fluorescent sensors to monitor linear and K63-linked chains in?vitro and in?vivo. We utilize the UBD in NEMO and ABIN (UBAN) for detection of linear chains, and RAP80 ubiquitin-interacting motif (UIM) and TAB2 Npl4 zinc finger (NZF) domains to detect K63 chains. Linear and K63 sensors decorated the ubiquitin coat surrounding cytosolic Salmonella during bacterial autophagy, whereas K63 sensors selectively monitored Parkin-induced mitophagy and DNA damage responses in fixed and living cells. In addition, linear and K63 sensors could be used to monitor endogenous signaling pathways, as demonstrated by their ability to differentially interfere with TNF- and IL-1-induced NF-κB pathway. We propose that UBD-based biosensors could serve as prototypes to track and trace other chain types and ubiquitin-like signals in?vivo.  相似文献   

8.
9.
Deubiquitinase USP20/VDU2 has been demonstrated to play important roles in multiple cellular processes by controlling the life span of substrate proteins including hypoxia‐inducible factor HIF1α, and so forth. USP20 contains four distinct structural domains including the N‐terminal zinc‐finger ubiquitin binding domain (ZnF‐UBP), the catalytic domain (USP domain), and two tandem DUSP domains, and none of the structures for these four domains has been solved. Meanwhile, except for the ZnF‐UBP domain, the biological functions for USP20's catalytic domain and tandem DUSP domains have been at least partially clarified. Here in this study, we determined the solution structure of USP20 ZnF‐UBP domain and investigated its binding properties with mono‐ubiquitin and poly‐ubiquitin (K48‐linked di‐ubiquitin) by using NMR and molecular modeling techniques. USP20's ZnF‐UBP domain forms a spherically shaped fold consisting of a central β‐sheet with either one α‐helix or two α‐helices packed on each side of the sheet. However, although having formed a canonical core structure essential for ubiquitin recognition, USP20 ZnF‐UBP presents weak ubiquitin binding capacity. The structural basis for understanding USP20 ZnF‐UBP's ubiquitin binding capacity was revealed by NMR data‐driven docking. Although the electrostatic interactions between D264 of USP5 (E87 in USP20 ZnF‐UBP) and R74 of ubiquitin are kept, the loss of the extensive interactions formed between ubiquitin's di‐glycine motif and the conserved and non‐conserved residues of USP20 ZnF‐UBP domain (W41, E55, and Y84) causes a significant decrease in its binding affinity to ubiquitin. Our findings indicate that USP20 ZnF‐UBP domain might have a physiological role unrelated to its ubiquitin binding capacity.  相似文献   

10.
11.
Stress associated proteins (SAPs) in plants contain A20-type zinc finger (A20_ZF) domains and are involved with abiotic stress response. A20-type zinc finger domains in animals reportedly recognize ubiquitin as a regulatory signal in cell. However, it remains unclear whether A20_ZF domains in plants perform similar roles. AtSAP5, a SAP from Arabidopsis thaliana, exhibits a unique sequence feature among 10 AtSAPs harboring A20_ZF domains. The highly conserved diaromatic patch is replaced by the dialipathic patch. Here we investigated whether AtSAP5 recognizes ubiquitin and the roles of the dialipathic patch in ubiquitin binding in vitro. GST pulldown assay reveals that AtSAP5 binds polyubiquitin rather than monoubiquitin. AtSAP5 shows preferences for linear and K63-linked polyubiquitin chains to K48-linked one. The A20_ZF domain of AtSAP5 is sufficient for linkage-specific polyubiquitin recognition. The dialipathic patch in AtSAP5 plays an important role in K48-linked polyubiquitin recognition. Taken together, our results suggest that AtSAP5 participates in polyubiquitin recognition in plants and that the dialipathic patch in AtSAP5 is critical in binding K48-linked polyubiquitn chains.  相似文献   

12.
13.
The conjugation of polyubiquitin to target proteins acts as a signal that regulates target stability, localization, and function. Several ubiquitin binding domains have been described, and while much is known about ubiquitin binding to the isolated domains, little is known with regard to how the domains interact with polyubiquitin in the context of full-length proteins. Isopeptidase T (IsoT/USP5) is a deubiquitinating enzyme that is largely responsible for the disassembly of unanchored polyubiquitin in the cell. IsoT has four ubiquitin binding domains: a zinc finger domain (ZnF UBP), which binds the proximal ubiquitin, a UBP domain that forms the active site, and two ubiquitin-associated (UBA) domains whose roles are unknown. Here, we show that the UBA domains are involved in binding two different polyubiquitin isoforms, linear and K48-linked. Using isothermal titration calorimetry, we show that IsoT has at least four ubiquitin binding sites for both polyubiquitin isoforms. The thermodynamics of the interactions reveal that the binding is enthalpy-driven. Mutation of the UBA domains suggests that UBA1 and UBA2 domains of IsoT interact with the third and fourth ubiquitins in both polyubiquitin isoforms, respectively. These data suggest that recognition of the polyubiquitin isoforms by IsoT involves considerable conformational mobility in the polyubiquitin ligand, in the enzyme, or in both.  相似文献   

14.
EL5, a RING-H2 finger protein, is rapidly induced by N-acetylchitooligosaccharides in rice cell. We expressed the EL5 RING-H2 finger domain in Escherichia coli and determined its structure in solution by NMR spectroscopy. The EL5 RING-H2 finger domain consists of two-stranded beta-sheets (beta1, Ala(147)-Phe(149); beta2, Gly(156)-His(158)), one alpha-helix (Cys(161)-Leu(166)), and two large N- and C-terminal loops. It is stabilized by two tetrahedrally coordinated zinc ions. This structure is similar to that of other RING finger domains of proteins of known function. From structural analogies, we inferred that the EL5 RING-H2 finger is a binding domain for ubiquitin-conjugating enzyme (E2). The binding site is probably formed by solvent-exposed hydrophobic residues of the N- and C-terminal loops and the alpha-helix. We demonstrated that the fusion protein with EL5-(96-181) and maltose-binding protein (MBP) was polyubiquitinated by incubation with ubiquitin, ubiquitin-activating enzyme (E1), and a rice E2 protein, OsUBC5b. This supported the idea that the EL5 RING finger domain is essential for ubiquitin-ligase activity of EL5. By NMR titration experiments, we identified residues that are critical for the interaction between the EL5 RING-H2 finger and OsUBC5b. We conclude that the RING-H2 finger domain of EL5 is the E2 binding site of EL5.  相似文献   

15.
SHARPIN (SHANK-associated RH domain interacting protein) is part of a large multi-protein E3 ubiquitin ligase complex called LUBAC (linear ubiquitin chain assembly complex), which catalyzes the formation of linear ubiquitin chains and regulates immune and apoptopic signaling pathways. The C-terminal half of SHARPIN contains ubiquitin-like domain and Npl4-zinc finger domains that mediate the interaction with the LUBAC subunit HOIP and ubiquitin, respectively. In contrast, the N-terminal region does not show any homology with known protein interaction domains but has been suggested to be responsible for self-association of SHARPIN, presumably via a coiled-coil region. We have determined the crystal structure of the N-terminal portion of SHARPIN, which adopts the highly conserved pleckstrin homology superfold that is often used as a scaffold to create protein interaction modules. We show that in SHARPIN, this domain does not appear to be used as a ligand recognition domain because it lacks many of the surface properties that are present in other pleckstrin homology fold-based interaction modules. Instead, it acts as a dimerization module extending the functional applications of this superfold.  相似文献   

16.
Solution structure of a zinc finger domain of yeast ADR1   总被引:14,自引:0,他引:14  
  相似文献   

17.
The AAA ATPase p97/VCP forms complexes with different adapters to fulfill distinct cellular functions. We analyzed the structural organization of the Ufd1-Npl4 adapter complex and its interaction with p97 and compared it with another adapter, p47. We found that the binary Ufd1-Npl4 complex forms a heterodimer that cooperatively interacts with p97 via a bipartite binding mechanism. Binding site 1 (BS1) is a short hydrophobic stretch in the C-terminal domain of Ufd1. The second binding site is located at the N terminus of Npl4 and is activated upon binding of Ufd1 to Npl4. It consists of about 80 amino acids that are predicted to form a ubiquitin fold domain (UBD). Despite the lack of overall homology between Ufd1-Npl4 and p47, both adapters use identical binding mechanisms. Like the ubiquitin fold ubiquitin regulatory X (UBX) domain in p47, the Npl4-UBD interacts with p97 via the loop between its strands 3 and 4 and a conserved arginine in strand 1. Furthermore, we identified a region in p47 homologous to Ufd1-BS1. The UBD/UBX and the BS1 of both adapters interact with p97 independently, whereas homologous binding sites in both adapters compete for binding to p97. In contrast to p47, however, Ufd1-Npl4 does not regulate the ATPase activity of p97; nor does a variant of p47 that contains both binding sites but lacks the N-terminal domains. Therefore, the binding sites alone do not regulate p97 directly but rather serve as anchor points to position adapter-specific domains at critical locations to modulate p97-mediated reactions.  相似文献   

18.
19.
20.
真核生物中锌指蛋白的结构与功能   总被引:3,自引:0,他引:3  
真核生物中的许多蛋白质分子包含锌指结构区,这类蛋白称为锌指蛋白.锌指蛋白因其包含特殊的指状结构,在对DNA、蛋白质和RNA的识别和结合中起重要作用.许多锌指蛋白的锌指结构域包含能与DNA特异结合的区域,并与某些效应结构域(如KRAB、SCAN、BTB/POZ、SNAG、SANT和PLAG等)相连,这类锌指蛋白常作为转录因子起作用,可调控靶基因的转录.一些锌指蛋白包含蛋白质识别结构域(如LIM锌指、MYND锌指、PHD锌指和RING锌指等),它们能够特异地介导蛋白质之间的相互作用,因此被称作蛋白适配器.此外,某些锌指蛋白还可以结合RNA,起转录后调控作用.本文就锌指蛋白与DNA、RNA以及蛋白质分子间的相互作用作一综述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号