首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The receptor activator of NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG), are the important proteins involved in osteoclastogenesis. In this study, we investigated the expressions of RANKL and OPG in cultured human periodontal ligament cells derived from deciduous teeth (DPDL cells) and their roles in osteoclastogenesis. Northern blotting revealed that the OPG mRNA was down-regulated by application of 10(-8) M 1 alpha, 25(OH)2 vitamin D3 [1,25-(OH)2D3] and 10(-7) M dexamethasone (Dex). In contrast, RANKL mRNA was up-regulated by the same treatment. Western blotting demonstrated a decrease in OPG following application of 1, 25-(OH)2D3 and Dex. Tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cells (MNCs) were induced when DPDL cells were co-cultured with mouse bone marrow cells in the presence of 1,25-(OH)2D3 and Dex. TRAP-positive MNCs increased significantly when the DPDL cells were co-cultured with bone marrow cells in the presence of anti-human OPG antibody together with 1, 25-(OH)2D3 and Dex. These results indicate that PDL cells derived from deciduous teeth synthesize both RANKL and OPG and could regulate the differentiation of osteoclasts.  相似文献   

2.
Receptor activator of NF-kB Ligand (RANKL) is an essential requirement for osteoclastogenesis and its activity is neutralized by binding to the soluble decoy receptor osteoprotegerin (OPG). The purpose of this work was to study the effects of RANKL and OPG during osteoclastogenesis using the murine monocytic cell line RAW 264.7 that can differentiate into osteoclasts in vitro. RAW 264.7 cells plated at 10(4) cells/cm(2) and cultured for 4 days in the presence of RANKL represent the optimal culture conditions for osteoclast differentiation, with an up-regulation of all parameters related to bone resorption: tartrate resistant acid phosphatase (TRAP), calcitonin receptor (CTR), RANK, cathepsin K, matrix metalloproteinase (MMP)-9 mRNA expressions. RANKL and OPG biological effects vary according to the differentiation state of the cells: in undifferentiated RAW 264.7 cells, TRAP expression was decreased by OPG and RANKL, RANK expression was inhibited by OPG, while MMP-9 and cathepsin K mRNA expressions were not modulated. In differentiated RAW 264.7 cells, RANKL and OPG both exert an overall inhibitory effect on the expression of all the parameters studied. In these experimental conditions, OPG-induced MMP-9 inhibition was abrogated in the presence of a blocking anti-RANKL antibody, suggesting that part of OPG effects are RANKL-dependent.  相似文献   

3.
Bone is continuously remodeled through resorption by osteoclasts and the subsequent synthesis of the bone matrix by osteoblasts. Cell-to-cell contact between osteoblasts and osteoclast precursors is required for osteoclast formation. RANKL (receptor activator of nuclear factor-kappaB ligand) expressed on osteoblastic cell membranes stimulates osteoclastogenesis, while osteoprotegerin (OPG) secreted by osteoblasts inhibits osteoclastogenesis. Although polyunsaturated fatty acids (PUFAs) have been implicated in bone homeostasis, the effects thereof on OPG and RANKL secretion have not been investigated. MC3T3-E1 osteoblasts were exposed to the n-6 PUFA arachidonic acid (AA) and the n-3 PUFA docosahexaenoic acid (DHA); furthermore, the bone-active hormone parathyroid hormone (PTH) and the effects thereof were tested on OPG and RANKL secretion. Prostaglandin E(2) (PGE(2)), a product of AA metabolism that was previously implicated in bone homeostasis, was included in the study. AA (5.0-20 microg/ml) inhibited OPG secretion by 25-30%, which was attenuated by pretreatment with the cyclooxygenase blocker indomethacin, suggesting that the inhibitory effect of AA on OPG could possibly be PGE(2)-mediated. MC3T3-E1 cells secreted very low basal levels of RANKL, but AA stimulated RANKL secretion, thereby decreasing the OPG/RANKL ratio. DHA suppressed OPG secretion to a smaller extent than AA. This could, however, be due to endogenous PGE(2) production. No RANKL could be detected after exposing the MC3T3-E1 cells to DHA. PTH did not affect OPG secretion, but stimulated RANKL secretion. This study demonstrates that AA and PTH reduce the OPG/RANKL ratio and may increase osteoclastogenesis. DHA, however, had no significant effect on OPG or RANKL in this model.  相似文献   

4.
Osteoprotegerin and inflammation   总被引:7,自引:0,他引:7  
RANK, RANKL, and OPG have well established regulatory effects on bone metabolism. RANK is expressed at very high levels on osteoclastic precursors and on mature osteoclasts, and is required for differentiation and activation of the osteoclast. The ligand, RANKL binds to its receptor RANK to induce bone resorption. RANKL is a transmembrane protein expressed in various cells type and particularly on osteoblast and activated T cells. RANKL can be cleaved and the soluble form is active. Osteoprotegerin decoy receptor (OPG), a member of the TNF receptor family expressed by osteoblasts, strongly inhibits bone resorption by binding with high affinity to its ligand RANKL, thereby preventing RANKL from engaging its receptor RANK. This system is regulated by the calciotropic hormones. Conversely, the effects of RANKL, RANK, and OPG on inflammatory processes, most notably on the bone resorption associated with inflammation, remain to be defined. The RANK system seems to play a major role in modulating the immune system. Activated T cells express RANKL messenger RNA, and knock-out mice for RANKL acquire severe immunological abnormalities and osteopetrosis. RANKL secretion by activated T cells can induce osteoclastogenesis. These mechanisms are enhanced by cytokines such as TNF-alpha, IL-1, and IL-17, which promote both inflammation and bone resorption. Conversely, this system is blocked by OPG, IL-4, and IL-10, which inhibit both inflammation and osteoclastogenesis. These data may explain part of the abnormal phenomena in diseases such as rheumatoid arthritis characterized by both inflammation and destruction. Activated T cells within the rheumatoid synovium express RANKL. Synovial cells are capable of differentiating to osteoclast-like cells under some conditions, including culturing with M-CSF and RANKL. This suggests that the bone erosion seen in rheumatoid arthritis may result from RANKL/RANK system activation by activated T cells. This opens up the possibility that OPG may have therapeutic effects mediated by blockade of the RANKL/RANK system.  相似文献   

5.

Purpose

Osteoprotegerin (OPG) affects bone metabolism by intercepting the RANK-RANKL interaction which prevents osteoclastic differentiation and consequently reduces bone resorption. Different bone phenotypes of mice overexpressing OPG and of mice with knockdown of receptor activator of NF-κB (RANK) or RANK-ligand (RANKL) suggest that the mechanism of action of the OPG-RANKL-RANK system in regulating bone remodeling is not completely understood. Furthermore, OPG increases bone mass and density independently from reduced osteoclastogenesis which is consistent with the possibility that OPG may directly affect bone metabolism beyond its known role as decoy receptor for RANKL.

Methods

We treated primary human osteoblastic cells with OPG and inhibitory anti-RANKL antibodies and measured cellular ALP activity, in vitro mineralization, vitronectin receptor protein expression and ERK phosphorylation. We also analyzed the mRNA co-expression of ALP and OPG ex vivo in bone biopsies from acute and old stable vertebral fractures.

Results

OPG directly increased ALP activity and in vitro mineralization of HOC, enhanced expression of the vitronectin receptor thereby increasing adherence of HOC to vitronectin and stimulated ERK phosphorylation. All OPG-mediated effects could be prevented by RANKL antibodies or RANKL-siRNA transfection and MAPK inhibitor PD98059 reduced the stimulatory effect of OPG on integrin αv expression. In acutely fractured vertebrae OPG and ALP mRNA expression was significantly increased compared to stable vertebral fractures. In conclusion, OPG exerts direct osteoanabolic effects on HOC metabolism via RANKL in addition to its well described role as decoy receptor for RANKL.  相似文献   

6.
IntroductionWe designed OP3-4 (YCEIEFCYLIR), a cyclic peptide, to mimic the soluble osteoprotegerin (OPG), and was proven to bind to RANKL (receptor activator of NF-κB ligand), thereby inhibiting osteoclastogenesis. We recently found that another RANKL binding peptide, W9, could accelerate bone formation by affecting RANKL signaling in osteoblasts. We herein demonstrate the effects of OP3-4 on bone formation and bone loss in a murine model of rheumatoid arthritis.MethodsTwenty-four seven-week-old male DBA/1J mice were used to generate a murine model of collagen-induced arthritis (CIA). Then, vehicle or OP3-4 (9 mg/kg/day or 18 mg/kg/day) was subcutaneously infused using infusion pumps for three weeks beginning seven days after the second immunization. The arthritis score was assessed, and the mice were sacrificed on day 49. Thereafter, radiographic, histological and biochemical analyses were performed.ResultsThe OP3-4 treatment did not significantly inhibit the CIA-induced arthritis, but limited bone loss. Micro-CT images and quantitative measurements of the bone mineral density revealed that 18 mg/kg/day OP3-4 prevented the CIA-induced bone loss at both articular and periarticular sites of tibiae. As expected, OP3-4 significantly reduced the CIA-induced serum CTX levels, a marker of bone resorption. Interestingly, the bone histomorphometric analyses using undecalcified sections showed that OP3-4 prevented the CIA-induced reduction of bone formation-related parameters at the periarticular sites.ConclusionThe peptide that mimicked OPG prevented inflammatory bone loss by inhibiting bone resorption and stimulating bone formation. It could therefore be a useful template for the development of small molecule drugs for inflammatory bone loss.

Electronic supplementary material

The online version of this article (doi:10.1186/s13075-015-0753-8) contains supplementary material, which is available to authorized users.  相似文献   

7.
Porphyromonas gingivalis is a Gram-negative anaerobe implicated in chronic periodontitis, a bacterial-induced inflammatory condition that causes destruction of the periodontal connective tissues and underlying alveolar bone. The receptor activator of nuclear factor-kappaB ligand (RANKL) is a cytokine that directly stimulates osteoclastogenesis and bone resorption, whereas its decoy receptor osteoprotegerin (OPG) blocks this action. This study aimed to investigate the effects of P. gingivalis culture supernatants on RANKL and OPG expression in W20-17 bone marrow stromal cells, and evaluate the involvement of its virulence factors, particularly gingipains and lipopolysaccharide. P. gingivalis up-regulated RANKL and down-regulated OPG mRNA expression and protein production. These effects were blocked by indomethacin, suggesting mediation by prostaglandins. Furthermore, P gingivalis induced the production of prostaglandin E(2). Heat-inactivation, or chemical inhibition of P. gingivalis gingipains did not affect RANKL and OPG regulation. However, lipopolysaccharide depletion by polymyxin B abolished RANKL induction, and partly rescued the suppression of OPG. In conclusion, P. gingivalis regulates the RANKL-OPG system via prostaglandin E(2) in bone marrow stromal cells, in a manner that favours osteoclastogenesis. A non-proteolytic and non-proteinaceous P. gingivalis component is involved in these events, most probably its lipopolysaccharide. This activity may contribute to the bone loss characteristic of periodontitis.  相似文献   

8.
LPS is a potent stimulator of bone resorption in inflammatory diseases. The mechanism by which LPS induces osteoclastogenesis was studied in cocultures of mouse osteoblasts and bone marrow cells. LPS stimulated osteoclast formation and PGE(2) production in cocultures of mouse osteoblasts and bone marrow cells, and the stimulation was completely inhibited by NS398, a cyclooxygenase-2 inhibitor. Osteoblasts, but not bone marrow cells, produced PGE(2) in response to LPS. LPS-induced osteoclast formation was also inhibited by osteoprotegerin (OPG), a decoy receptor of receptor activator of NF-kappaB ligand (RANKL), but not by anti-mouse TNFR1 Ab or IL-1 receptor antagonist. LPS induced both stimulation of RANKL mRNA expression and inhibition of OPG mRNA expression in osteoblasts. NS398 blocked LPS-induced down-regulation of OPG mRNA expression, but not LPS-induced up-regulation of RANKL mRNA expression, suggesting that down-regulation of OPG expression by PGE(2) is involved in LPS-induced osteoclast formation in the cocultures. NS398 failed to inhibit LPS-induced osteoclastogenesis in cocultures containing OPG knockout mouse-derived osteoblasts. IL-1 also stimulated PGE(2) production in osteoblasts and osteoclast formation in the cocultures, and the stimulation was inhibited by NS398. As seen with LPS, NS398 failed to inhibit IL-1-induced osteoclast formation in cocultures with OPG-deficient osteoblasts. These results suggest that IL-1 as well as LPS stimulates osteoclastogenesis through two parallel events: direct enhancement of RANKL expression and suppression of OPG expression, which is mediated by PGE(2) production.  相似文献   

9.
IL-17 is a T cell-derived proinflammatory cytokine in experimental arthritis and is a stimulator of osteoclastogenesis in vitro. In this study, we report the effects of IL-17 overexpression (AdIL-17) in the knee joint of type II collagen-immunized mice on bone erosion and synovial receptor activator of NF-kappa B ligand (RANKL)/receptor activator of NF-kappa B/osteoprotegerin (OPG) expression. Local IL-17 promoted osteoclastic bone destruction, which was accompanied with marked tartrate-resistant acid phosphatase activity at sites of bone erosion in cortical, subchondral, and trabecular bone. Accelerated expression of RANKL and its receptor, receptor activator of NF-kappa B, was found in the synovial infiltrate and at sites of focal bone erosion, using specific immunohistochemistry. Interestingly, AdIL-17 not only enhanced RANKL expression but also strongly up-regulated the RANKL/OPG ratio in the synovium. Comparison of arthritic mice from the AdIL-17 collagen-induced arthritis group with full-blown collagen-arthritic mice having similar clinical scores for joint inflammation revealed lower RANKL/OPG ratio and tartrate-resistant acid phosphatase activity in the latter group. Interestingly, systemic OPG treatment prevented joint damage induced by local AdIL-17 gene transfer in type II collagen-immunized mice. These findings suggest T cell IL-17 to be an important inducer of RANKL expression leading to loss of the RANKL/OPG balance, stimulating osteoclastogenesis and bone erosion in arthritis.  相似文献   

10.
Receptor activator of nuclear factor-kappaB ligand (RANKL), osteoprotegerin (OPG), and macrophage-colony stimulating factor play essential roles in the regulation of osteoclastogenesis. Runx2-deficient (Runx2-/-) mice showed a complete lack of bone formation because of maturational arrest of osteoblasts and disturbed chondrocyte maturation. Further, osteoclasts were absent in these mice, in which OPG and macrophage-colony stimulating factor were normally expressed, but RANKL expression was severely diminished. We investigated the function of Runx2 in osteoclast differentiation. A Runx2-/- calvaria-derived cell line (CA120-4), which expressed OPG strongly but RANKL barely, severely suppressed osteoclast differentiation from normal bone marrow cells in co-cultures. Adenoviral introduction of Runx2 into CA120-4 cells induced RANKL expression, suppressed OPG expression, and restored osteoclast differentiation from normal bone marrow cells, whereas the addition of OPG abolished the osteoclast differentiation induced by Runx2. Addition of soluble RANKL (sRANKL) also restored osteoclast differentiation in co-cultures. Forced expression of sRANKL in Runx2-/- livers increased the number and size of osteoclast-like cells around calcified cartilage, although vascular invasion into the cartilage was superficial because of incomplete osteoclast differentiation. These findings indicate that Runx2 promotes osteoclast differentiation by inducing RANKL and inhibiting OPG. As the introduction of sRANKL was insufficient for osteoclast differentiation in Runx2-/- mice, however, our findings also suggest that additional factor(s) or matrix protein(s), which are induced in terminally differentiated chondrocytes or osteoblasts by Runx2, are required for osteoclastogenesis in early skeletal development.  相似文献   

11.
Statins stimulate bone formation partly by inducing osteoblast differentiation, although there is controversy about the effects of statins on bone mineral density and fracture risk. Several studies have revealed that statins suppress bone resorption. However, the mechanism by which statins inhibit bone resorption is still unclear. The present study was performed to clarify the effects of statins on osteoclast formation as well as the levels of osteoprotegerin (OPG) and receptor activator of NFkappaB ligand (RANKL) mRNA in mouse bone-cell cultures by semiquantitative RT-PCR. 10(-8) M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] significantly stimulated osteoclast formation and 10(-6) M statins (mevastatin and simvastatin) significantly antagonized osteoclast formation stimulated by 1,25(OH)2D3 in mouse bone-cell cultures, including both osteoblasts and osteoclasts. 10(-6) M mevastatin and simvastatin increased the level of OPG mRNA in mouse bone-cell cultures. On the other hand, 10(-6) M mevastatin and simvastatin inhibited the level of RANKL mRNA in these cultures. In conclusion, the present study demonstrates that statins inhibit osteoclast formation in mouse bone-cell cultures. Moreover, statins also increased and decreased the levels of OPG and RANKL mRNA expression in these cultures, respectively. The modulation of OPG/RANKL may be involved in the inhibition of osteoclast formation by statins.  相似文献   

12.
Receptor activator of Nf-kappaB ligand (RANKL) and osteoprotegerin (OPG) have been implicated in bone metabolism. Specifically, the balance of these factors in conjunction with receptor activator of Nf-kappaB (RANK) is believed to be key in determining the rate of osteoclastogenesis and the net outcome of bone formation/resorption. While it is well accepted that mechanical loading in vivo affects bone formation/resorption and that alterations in the responsiveness of bone cells to mechanical loading have been implicated in metabolic bone diseases, the effect of in vitro mechanical loading on osteoblastic production of OPG and RANKL has not been extensively studied. Thus, in the current study, we developed an in vitro model to load human osteoblasts and studied levels of OPG, RANKL, PGE(2) and macrophage colony stimulating factor (M-CSF). We hypothesized that stimulating osteoblastic cells would increase the release of soluble OPG relative to RANKL favoring a bone-forming (and resorption-inhibiting) event. To accomplish this, we developed a small-scale loading machine that imparts via bending, well-defined substrate deformation to bone cells cultured on artificial substrates. Following 2h of loading and a 1h incubation period, media was collected and levels of soluble OPG, RANKL, PGE(2) and M-CSF were quantified using ELISA and western blotting. We found that mechanical loading significantly increased soluble OPG levels relative to RANKL at this 3h time point. Levels of soluble and cellular RANKL detected were not significantly affected by mechanical stimulation. The relative shift in abundance of OPG over RANKL associated with applied mechanical stimulation suggests the soluble OPG:RANKL ratio may be important in load-induced coupling mechanisms of bone cells.  相似文献   

13.
A variety of humoral factors modulate the osteoclastogenesis. Receptor activator of NF-kappaB ligand (RANKL) expressed on osteoblast/stromal lineage cells plays a pivotal role to transduce an essential differentiation signal to osteoclast lineage cells through binding to its receptor, RANK, expressed on the latter cell population; however, the difficulty to detect RANKL protein expression hampers us in investigating the regulation of RANKL expression by humoral factors. To determine protein expression of RANKL, we have established a new method, named as a ligand-receptor precipitation (LRP) Western blot analysis, which can specifically concentrate the target protein by the use of specific binding characteristic between RANKL and RANK/osteoprotegrin (OPG). RANKL protein expression in the postnuclear supernatant was not detected by common Western blotting, but LRP Western blot analysis clearly showed that RANKL is produced as a membrane-bound protein on murine osteoblasts/stromal cells, and cleaved into a soluble form by metalloprotease. Cytokines stimulating the osteoclastogenesis, such as IL-1beta, IL-6, IL-11, IL-17, and TNF-alpha, increased the expression of RANKL with decrease of OPG expression in osteoblasts/stromal cells. In contrast, cytokines inhibiting the osteoclastogenesis, such as IL-13, INF-gamma, and TGF-beta1 suppressed the expression of RANKL and/or augmented OPG expression. Functional difference between membrane-bound and soluble RANKL was demonstrated, which showed that membrane-bound RANKL works more efficiently than soluble RANKL in the osteoclastogenesis developed from murine bone marrow cell culture. The present study indicates the usefulness of LRP Western blot analysis, which shows that the modulation of osteoclastogenesis by humoral factors is achieved, in part, by regulation of the expression of RANKL and OPG in osteoblast/stromal lineage cells.  相似文献   

14.
The role that androgens play in the regulation of bone metabolism has been substantiated in animals and humans. We previously demonstrated that testosterone inhibits osteoclast differentiation stimulated by parathyroid hormone through the androgen receptor in mouse bone-cell cultures. However, the details of this mechanism are still unknown. The present study was aimed at examining whether testosterone would affect the mRNA levels of osteoprotegerin (OPG) and receptor activator of Nf kappa B ligand (RANKL) in mouse bone-cell cultures as well as mouse osteoblastic cell-line, MC3T3-E1 cells by employing semi-quantitative RT-PCR. Testosterone increased OPG mRNA expression in both mouse bone-cell cultures and MC3T3-E1 cells. 10-8 M PTH-(1-34) as well as 10-8M 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] inhibited OPG mRNA expression in mouse bone cells. 10-8 M testosterone antagonized OPG mRNA expression inhibited by 10-8 M PTH-(1-34), but failed to affect OPG mRNA expression inhibited by 10-8 M 1,25(OH)2D3. 10-8 M alpha-dehydrotestosterone, a non-aromatizable androgen, increased OPG mRNA expression. On the other hand, testosterone did not affect RANKL mRNA expression in MC3T3-E1 or mouse bone cells. In conclusion, the present study demonstrated that testosterone increased OPG mRNA expression in mouse bone-cell cultures and the osteoblastic cell line. These effects are likely to take place through the androgen receptor.  相似文献   

15.
Osteopontin as a positive regulator in the osteoclastogenesis of arthritis   总被引:2,自引:0,他引:2  
We examined the role of osteopontin (OPN) in the osteoclastogenesis of arthritis using collagen-induced arthritis (CIA). Cells from arthritic joints of wild-type (OPN +/+) mice spontaneously developed bone-resorbing osteoclast-like cells (OCLs). The cultured cells showed an enhanced expression of receptor activator of nuclear factor kappaB ligand (RANKL) and a decreased expression of osteoprotegerin (OPG). The addition of OPG reduced the number of OCLs, indicating that the osteoclastogenesis depends on the RANK/RANKL/OPG system. The cells also produced OPN abundantly and anti-OPN neutralizing antibodies suppressed the development of OCLs. Moreover, the addition of OPN increased the expression of RANKL and augmented differentiation of OCLs from OPN-deficient (OPN -/-) cells. OPN, like the combination of 1alpha,25-dihydroxyvitamin D(3) and dexamethasone, also enhanced the RANKL expression and decreased OPG expression in a stromal cell line, ST2. These results suggest that OPN acts as a positive regulator in the osteoclastogenesis of arthritis through the RANK/RANKL/OPG system.  相似文献   

16.
Osteoprotegerin (OPG) is a decoy receptor for receptor activator of NF-kappaB ligand (RANKL). We previously reported that OPG deficiency elevated the circulating level of RANKL in mice. Using OPG(-/-) mice, we investigated whether OPG is involved in the shedding of RANKL by cells expressing RANKL. Osteoblasts and activated T cells in culture released a large amount of RANKL in the absence of OPG. OPG or a soluble form of receptor activator of NF-kappaB (the receptor of RANKL) suppressed the release of RANKL from those cells. OPG- and T cell-double-deficient mice showed an elevated serum RANKL level equivalent to that of OPG(-/-) mice, indicating that circulating RANKL is mainly derived from bone. The serum level of RANKL in OPG(-/-) mice was increased by ovariectomy or administration of 1alpha,25-dihydroxyvitamin D(3). Expression of RANKL mRNA in bone, but not thymus or spleen, was increased in wild-type and OPG(-/-) mice by 1alpha,25-dihydroxyvitamin D(3). These results suggest that OPG suppresses the shedding of RANKL from osteoblasts and that the serum RANKL in OPG(-/-) mice exactly reflects the state of bone resorption.  相似文献   

17.
Irradiation-induced bone loss is widely reported, especially in radiotherapy-induced osteoporosis. In addition to the mechanism of osteogenesis inhibition and osteoclastogenesis promotion, the regulation effect of osteocytes, which also send signals to modulate osteoclastogenesis, should be elucidated. In this study, the effect of irradiation on osteocyte and its accommodation to osteoclastogenesis via the release of high mobility group box 1 (HMGB1) was explored. Furthermore, the control response of HMGB1 inhibitor on receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) expression in osteocyte and osteocyte-induced osteoclastogenesis was assessed. It was observed that irradiated osteocyte-like MLO-Y4 cells exhibited polygonal-shaped morphological changes and shortened dendrites, inhibited cell viability and induced cellular apoptosis, along with the reduction in dendritic E11 protein/messenger RNA expression at a doses of 4 Gy. Additionally, the secretion of HMGB1 in supernatants was promoted, accompanied by the decreased OPG and elevated RANKL expression. When the RAW264.7 cells were cocultured with irradiated MLO-Y4 cells or its conditioned medium, enhanced migration and differentiation of osteoclast precursor was observed, and this difference was alleviated with anti-HMGB1 neutralizing antibody. In conclusion, this study demonstrated that irradiation deteriorated osteocytes’ potential to promote recruitment and differentiation of osteoclast precursor via stimulating HMGB1 release and subsequent elevation of RANKL/OPG level. This study will assist in designing the intervention programs for irradiation-induced bone loss.  相似文献   

18.
The β2-adrenergic receptor (β2-AR) signaling on bone cells is the major contributor in the effect of the sympathetic nervous system on bone turnover. However, it remains unclear whether receptor activator of nuclear factor κ-Β ligand (RANKL) modulation and neuropeptides expression in osteocytes are responsible for the mechanism. This study used β2-AR stimulation to investigate cell cycle and proliferation, the gene and protein expression of RANKL, and osteoprotegerin (OPG), as well as neuropeptides regulation in osteocytic MLO-Y4 cells. Clenbuterol (CLE; a β2-AR agonist) slightly promoted the growth of MLO-Y4 cells in a concentration-dependent effect but had no effect on the proliferation index. And the concentration of 10−8 M showed a significant increase in the S-phase fraction on day 3 in comparison with the control. Additionally, CLE-promoted osteoclast formation and bone resorption in osteocytic MLO-Y4 cell-RAW264.7 cell cocultures. RANKL expression level and the ratio of RANKL to OPG in MLO-Y4 cells were enhanced in CLE treatment but were rescued by blocking β2-AR signaling. However, neuropeptide Y and α-calcitonin gene-related peptide, two neurogenic markers, were inhibited in CLE treatment of MLO-Y4 cells, which was reversed by a β2-AR blocker. The results indicate that osteocytic β2-AR plays an important role in the regulation of RANKL/OPG and neuropeptides expression, and β2-AR signaling in osteocytes can be used as a new valuable target for osteoclast-related pathologic disease.  相似文献   

19.
Calcitonin receptor-stimulating peptide (CRSP) and intermedin (IMD) are two recently discovered peptides in the calcitonin (CT) family of peptides. CRSP and IMD, similar to CT, calcitonin gene-related peptide (CGRP), and amylin (AMY), but in contrast to adrenomedullin (ADM), inhibited bone resorption in mouse calvarial bones. CRSP and IMD, similar to CT, CGRP, AMY, but in contrast to ADM, decreased formation of osteoclasts and number of pits in bone marrow macrophage cultures stimulated by M-CSF and RANKL, with no effect on the expression of a number of genes associated with osteoclast progenitor cell differentiation. CRSP and IMD inhibited osteoclastogenesis at a late stage but had no effect on DC-STAMP mRNA. IMD, similar to CGRP, AMY, and ADM stimulated cyclic AMP formation in M-CSF expanded osteoclast progenitor cells lacking CT receptors (CTRs). RANKL induced CTRs and a cyclic AMP response also to CT and CRSP, and increased the cyclic AMP response to CGRP, AMY, and IMD but decreased the response to ADM. Our data demonstrates that CRSP and IMD share several functional properties of peptides in the CT family of peptides, including inhibition of bone resorption and osteoclast formation. The data also show that the reason why ADM does not inhibit osteoclast activity or formation is related to the fact that RANKL decreases ADM receptor signaling through the adenylate cyclase-cyclic AMP pathway. Finally, the findings indicate that activation by CGRP, AMY, and IMD may include activation of both CT and CT receptor-like receptors.  相似文献   

20.
The differentiation and activity of osteoclasts are positively and negatively controlled by receptor activator of nuclear factor-kappaB ligand (RANKL), which is expressed on the surface of osteoblasts and stromal cells, and its decoy receptor osteoprotegerin (OPG), which is secreted by osteoblasts and stromal cells, respectively. The expression of the genes for RANKL and OPG is regulated by 1alpha,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. Runt-related gene-2 (Runx-2) is essential for osteoblast differentiation and there are several reports that Runx-2 is involved in osteoclast formation. Therefore, to clarify the role of Runx-2 in osteoclastogenesis, we designed a series of experiments using C2 cells and C6 cells, which are derived from calvariae of runx2-deficient mice. Treatment of C2 cells and C6 cells with 1alpha,25(OH)(2)D(3) for 2-4 days increased and decreased the levels of expression of the mRNAs for RANKL and OPG, respectively, and the effects were dose-dependent. However, by day 8, the level of RANKL mRNA had fallen and that of OPG mRNA had risen. Furthermore, C6 cells induced the differentiation of mouse spleen cells into tartrate-resistant acid phosphatase-positive (TRAP-positive) multinucleated cells (osteoclast-like cells) in the presence of 10(-7)M 1alpha,25(OH)(2)D(3). Such formation of osteoclast-like cells was inhibited by exogenous OPG in a dose-dependent manner. Thus, our findings indicate that Runx-2 is not essential for the expression of RANKL and OPG, and the formation of osteoclast-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号