首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Many cell death pathways converge at the mitochondria to induce release of apoptogenic proteins and permeability transition, resulting in the activation of effector caspases responsible for the biochemical and morphological alterations of apoptosis. The death receptor pathway has been described as a triphasic process initiated by the activation of apical caspases, a mitochondrial phase, and then the final phase of effector caspase activation. Granzyme B (GrB) activates apical and effector caspases as well as promotes cytochrome c (cyt c) release and loss of mitochondrial membrane potential. We investigated how GrB affects mitochondria utilizing an in vitro cell-free system and determined that cyt c release and permeability transition are initiated by distinct mechanisms. The cleavage of cytosolic BID by GrB results in truncated BID, initiating mitochondrial cyt c release. BID is the sole cytosolic protein responsible for this phenomenon in vitro, yet caspases were found to participate in cyt c release in some cells. On the other hand, GrB acts directly on mitochondria in the absence of cytosolic S100 proteins to open the permeability transition pore and to disrupt the proton electrochemical gradient. We suggest that GrB acts by two distinct mechanisms on mitochondria that ultimately lead to mitochondrial dysfunction and cellular demise.  相似文献   

2.
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAX(oligo)). We found that BAX(oligo) caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAX(oligo) also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAX(oligo) resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAX(oligo)-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAX(oligo) insertion into the OMM. Both BAX(oligo)- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H(2)O(2) release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAX(oligo) but not by alamethicin. Thus, BAX(oligo) resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.  相似文献   

3.
Induction of apoptosis often converges on the mitochondria to induce permeability transition and release of apoptotic proteins into the cytoplasm resulting in the biochemical and morphological alteration of apoptosis. Activation of a serine threonine kinase MEK kinase 1 (MEKK1) is involved in the induction of apoptosis. Expression of a kinase-inactive MEKK1 blocks genotoxin-induced apoptosis. Upon apoptotic stimulation, MEKK1 is cleaved into a 91-kDa kinase fragment that further induces an apoptotic response. Mutation of a consensus caspase 3 site in MEKK1 prevents its induction of apoptosis. The mechanism of MEKK1-induced apoptosis downstream of its cleavage, however, is unknown. Herein we demonstrate that full-length and cleaved MEKK1 leads to permeability transition in the mitochondria. This permeability transition occurs through opening of the permeability transition (PT) pore. Inhibiting PT pore opening and reactive oxygen species production effectively reduced MEKK1-induced apoptosis. Overexpression of MEKK1, however, failed to release cytochrome c from the mitochondria or activate caspase 9. Since Bcl2 regulates changes in mitochondria and blocks MEKK1-induced apoptosis, we determined that Bcl2 blocks MEKK1-induced apoptosis when targeted to the mitochondria. This occurs downstream of MEKK1 cleavage, since Bcl2 fails to block cleavage of MEKK1. In mouse embryonic fibroblast cells lacking caspase 3, the cleaved but not full-length MEKK1 induces apoptosis and permeability transition in the mitochondria. Overall, this suggests that cleaved MEKK1 leads to permeability transition contributing to MEKK1-induced apoptosis independent of cytochrome c release from the mitochondria.  相似文献   

4.
Mitochondrial permeability transition (MPT) and cytochrome c redistribution from mitochondria are two events associated with apoptosis. We investigated whether an MPT event obligatorily leads to cytochrome c release in vivo. We have previously shown that treatment of human osteosarcoma cells with the protonophore m-chlorophenylhydrazone (CCCP) for 6 h induces MPT and mitochondrial swelling without significant cell death. Here we demonstrate that release of cytochrome c does not occur and the cells remain viable even after 72 h of treatment with CCCP. Bax is not mobilized to mitochondria under these conditions. However, subsequent exposure of CCCP-treated cells to etoposide or staurosporine for 48 h results in rapid cell death and cytochrome c release that is accompanied by Bax association with mitochondria, demonstrating competency of these mitochondria to release cytochrome c with additional triggers. Our findings suggest that MPT is not a sufficient condition, in itself, to effect cytochrome c release.  相似文献   

5.
Biological actions of retinoids on modulation of cellular gene expression by nuclear receptors are widely known. Recently, extra-nuclear effects of retinoids have been proposed, but remain to be better elucidated. Considering that retinoids induce apoptosis in tumor cells by an unknown mechanism, and that mitochondria play a key role in controlling apoptosis via cytochrome c (cyt c) release, we exposed rat liver mitochondria to 3-40 microM of retinol (vitamin A), and observed that retinol causes mitochondrial permeability transition (MPT) and cyt c release, in a concentration-dependent pattern. Increased superoxide anion generation and lipoperoxidation were also observed. Cyclosporin A or trolox co-administration reverted all parameters tested. In view of these findings, we conclude that retinol induces mitochondria oxidative damage, leading to MPT and cyt c release by opening of the permeability transition pore, thus suggesting a putative mechanism of apoptosis activation by retinol.  相似文献   

6.
The mitochondrial permeability transition pore (PTP) and associated release of cytochrome c are thought to be important in the apoptotic process. Nitric oxide (NO( small middle dot)) has been reported to inhibit apoptosis by acting on a variety of extra-mitochondrial targets. The relationship between cytochrome c release and PTP opening, and the effects of NO( small middle dot) are not clearly established. Nitric oxide, S-nitrosothiols and peroxynitrite are reported to variously inhibit or promote PTP opening. In this study the effects of NO( small middle dot) on the PTP were characterized by exposing isolated rat liver mitochondria to physiological and pathological rates of NO( small middle dot) released from NONOate NO( small middle dot) donors. Nitric oxide reversibly inhibited PTP opening with an IC(50) of 11 nm NO( small middle dot)/s, which can be readily achieved in vivo by NO( small middle dot) synthases. The mechanism involved mitochondrial membrane depolarization and inhibition of Ca(2+) accumulation. At supraphysiological release rates (>2 micrometer/s) NO( small middle dot) accelerated PTP opening. Substantial cytochrome c release occurred with only a 20% change in mitochondrial swelling, was an early event in the PTP, and was also inhibited by NO( small middle dot). Furthermore, NO( small middle dot) exposure resulted in significantly lower cytochrome c release for the same degree of PTP opening. It is proposed that this pathway represents an additional mechanism underlying the antiapoptotic effects of NO( small middle dot).  相似文献   

7.
Endoplasmic reticulum (ER) stress induces apoptosis by mechanisms that are not fully clear. Here we show that ER stress induced by the Ca(2+)-ATPase inhibitor thapsigargin (THG) activates cytochrome c-dependent apoptosis through cooperation between Bax and the mitochondrial permeability transition (MPT) in human leukemic CEM cells. Pharmacological inhibition of the MPT as well as small interfering RNA (siRNA) knockdown of the MPT core component cyclophilin D blocked cytochrome c release and caspase-dependent apoptosis but did not prevent Bax activation, translocation or N-terminal exposure in mitochondria. siRNA knockdown of Bax also blocked THG-mediated cytochrome c release and apoptosis, but did not prevent MPT activation and resulted in caspase-independent cell death. Our results show that ER-stress-induced cell death involves a caspase and Bax-dependent pathway as well as a caspase-independent MPT-directed pathway.  相似文献   

8.
Cytochrome c release and mitochondrial permeability transition (MPT) play important roles in apoptosis. In this study, we found that selenium, an essential trace element, induced mitochondrial membrane potential (Delta psi(m)) loss, swelling, and cytochrome c release in isolated mitochondria. All of the above observations were blocked by cyclosporin A (CsA), which is a specific inhibitor to permeability transition pore (PTP), indicating selenite-induced mitochondrial changes were mediated through the opening of PTP. In physiological concentration, selenite could induce mitochondria at low-conductance PTP 'open' probability, which is correlated to regulate the physiological function, whereas in toxic concentration, induce mitochondria at high-conductance PTP 'open' probability and rapidly undergo a process of osmotic swelling following diffusion toward matrix as for inducer (Ca(2+)/P(i)). Selenite also induced other mitochondrial marker enzymes including monoamine oxidase (MAO) and mitochondria aspartate aminotransferase (mAST). Oligomycin inhibited the selenite-induced cytochrome c release and Delta psi(m) loss, showing that F(0)F(1)-ATPase was important in selenite or Ca(2+)/P(i)-induced MPT.  相似文献   

9.
Tsyregma Li  Bruno Antonsson 《BBA》2008,1777(11):1409-1421
In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAXoligo). We found that BAXoligo caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAXoligo also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAXoligo resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAXoligo-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAXoligo insertion into the OMM. Both BAXoligo- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H2O2 release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAXoligo but not by alamethicin. Thus, BAXoligo resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.  相似文献   

10.
Digitonin-permeabilized PC12 and GT1-7 neural cells exhibited a cyclosporin A-sensitive decrease in mitochondrial membrane potential, increased volume, and release of the pro-apoptotic factor cytochrome c in the presence of Ca2+ and the mitochondrial permeability transition (MPT) inducers t-butyl hydroperoxide (t-bOOH) or phenylarsine oxide (PhAsO). Although the concentration of PhAsO required to induce the MPT was similar for Bcl-2 negative and Bcl-2 overexpressing transfected cells (Bcl-2(+)), the level of t-bOOH necessary for triggering the MPT was much higher for Bcl-2(+) cells. A higher concentration of t-bOOH was also necessary for promoting the oxidation of mitochondrial pyridine nucleotides in Bcl-2(+) cells. The sensitivity of Bcl-2(- ) cell mitochondria to t-bOOH but not PhAsO could be overcome by the use of conditions that protect the pyridine nucleotides against oxidation. We conclude that the increased ability of Bcl-2(+) cells to maintain mitochondrial pyridine nucleotides in a reduced redox state is a sufficient explanation for their resistance to MPT under conditions of oxidative stress induced by Ca2+ plus t-bOOH.  相似文献   

11.
We have investigated the consequences of permeability transition pore (PTP) opening on the rate of production of reactive oxygen species in isolated rat liver mitochondria. We found that PTP opening fully inhibited H(2)O(2) production when mitochondria were energized both with complex I or II substrates. Because PTP opening led to mitochondrial pyridine nucleotide depletion, H(2)O(2) production was measured again in the presence of various amounts of NADH. PTP opening-induced H(2)O(2) production began when NADH concentration was higher than 50 microm and reached a maximum at over 300 microm. At such concentrations of NADH, the maximal H(2)O(2) production was 4-fold higher than that observed when mitochondria were permeabilized with the channel-forming antibiotic alamethicin, indicating that the PTP opening-induced H(2)O(2) production was not due to antioxidant depletion. Moreover, PTP opening decreased rotenone-sensitive NADH ubiquinone reductase activity, whereas it did not affect the NADH FeCN reductase activity. We conclude that PTP opening induces a specific conformational change of complex I that (i) dramatically increases H(2)O(2) production so long as electrons are provided to complex I, and (ii) inhibits the physiological pathway of electrons inside complex I. These data allowed the identification of a novel consequence of permeability transition that may partly account for the mechanism by which PTP opening induces cell death.  相似文献   

12.
The release of cytochrome c from mitochondria is a critical step during apoptosis. In order to study this process, we have used a synthetic compound, MT-21, that is able to initiate release of cytochrome c from isolated mitochondria. We demonstrate that MT-21 significantly inhibits ADP transport activity in mitochondria and reduces binding of the adenine nucleotide translocase (ANT) to a phenylarsine oxide affinity matrix. These results suggest that ANT, one of the components of the mitochondrial permeability transition (PT) pore, is the molecular target for MT-21. In agreement with this, the MT-21-induced cytochrome c release was effectively inhibited in the presence of ANT ligands, and MT-21 could dissociate ANT from a complex with a glutathione S-transferase-cyclophilin D fusion protein. Interestingly, we also found that specific inhibitors of ANT such as MT-21 and atractyloside could induce cytochrome c release without mitochondrial swelling and that this event was highly dependent on the presence of Mg(2+). These results suggest that although ANT resides in the mitochondrial inner membrane, specific ANT inhibitors can induce cytochrome c release without having an effect on inner membrane permeability. Therefore, MT-21 can be a powerful tool for studying the mechanism of PT-independent cytochrome c release from mitochondria.  相似文献   

13.
Cardiolipin oxidation is emerging as an important factor in mitochondrial dysfunction as well as in the initial phase of the apoptotic process. We have previously shown that exogenously added peroxidized cardiolipin sensitizes mitochondria to Ca2+-induced mitochondrial permeability transition (MPT) pore opening and promotes the release of cytochrome c. In this work, the effects of intramitochondrial cardiolipin peroxidation on Ca2+-induced MPT and on the cytochrome c release from mitochondria were studied. The effects of melatonin, a compound known to protect the mitochondria from oxidative damage, on both of these processes were also tested. tert-Butylhydroperoxide (t-BuOOH), a lipid-soluble peroxide that promotes lipid peroxidation, was used to induce intramitochondrial cardiolipin peroxidation. Exposure of heart mitochondria to t-BuOOH resulted in the oxidation of cardiolipin, associated with an increased sensitivity of mitochondria to Ca2+-induced MPT and with the release of cytochrome c from the mitochondria. All these processes were inhibited by micromolar concentrations of melatonin. It is proposed that melatonin inhibits cardiolipin peroxidation in mitochondria, and this effect seems to be responsible for the protection afforded by this agent against the MPT induction and cytochrome c release. Thus, manipulating the oxidation sensitivity of cardiolipin with melatonin may help to control MPT and cytochrome c release, events associated with cell death, and thus, be used for treatment of those disorders characterized by mitochondrial cardiolipin oxidation and Ca2+ overload.  相似文献   

14.
Thapsigargin directly induces the mitochondrial permeability transition.   总被引:5,自引:0,他引:5  
High concentrations of thapsigargin (TG) have been used to study the process of necrotic cell death, which involves mitochondria in the cell rapidly undergoing the mitochondrial permeability transition (MPT). We therefore investigated the effects of TG on MPT in isolated liver and heart mitochondria. Using a matrix swelling assay in combination with a novel enzymatic method based on inner membrane permeability to citrate synthase substrates, TG induced MPT in a concentration-dependent manner, independent of extramitochondrial [Ca2+] and inhibitable by cyclosporin A. Evidence from alamethicin-permeabilized mitochondria suggests that TG induces MPT by causing Ca2+ release from mitochondrial matrix Ca2+-binding sites. These findings suggest that the MPT-inducing effect of TG may contribute to its pro-necrotic and pro-apoptotic effects in various cell types.  相似文献   

15.
Cardiolipin peroxidation plays a critical role in mitochondrial cytochrome c release and subsequent apoptotic process. Mitochondrial pore transition (MPT) is considered as an important step in this process. In this work, the effect of peroxidized cardiolipin on MPT induction and cytochrome c release in rat heart mitochondria was investigated. Treatment of mitochondria with micromolar concentrations of cardiolipin hydroperoxide (CLOOH) resulted in a dose-dependent matrix swelling, DeltaPsi collapse, release of preaccumulated Ca2+ and release of cytochrome c. All these events were inhibited by cyclosporin A and bongkrekic acid, indicating that peroxidized cardiolipin behaves as an inducer of MPT. Ca2+ accumulation by mitochondria was required for this effect. ANT (ADP/ATP translocator) appears to be involved in the CLOOH-dependent MPT induction, as suggested by the modulation by ligands and inhibitors of adenine nucleotide translocator (ANT). Together, these results indicate that peroxidized cardiolipin lowers the threshold of Ca2+ for MPT induction and cytochrome c release. This synergistic effect of Ca2+ and peroxidized cardiolipin on MPT induction and cytochrome c release in mitochondria, might be important in regulating the initial phase of apoptosis and also may have important implications in those physiopathological situations, characterized by both Ca2+ and peroxidized cardiolipin accumulation in mitochondria, such as aging, ischemia/reperfusion and other degenerative diseases.  相似文献   

16.
Bid, a pro-apoptosis "BH3-only" member of the Bcl-2 family, can be cleaved by caspase-8 after Fas/TNF-R1 engagement. The p15 form of truncated Bid (tBid) translocates to mitochondria and induces cytochrome c release, leading to the activation of downstream caspases and apoptosis. In the current study, we investigated the mechanism by which tBid regulated cytochrome c release in terms of its relationship to mitochondrial permeability transition and Bax, another Bcl-2 family protein. We employed an in vitro reconstitution system as well as cell cultures and an animal model to reflect the physiological environment where Bid could be functional. We found that induction of cytochrome c release by tBid was not accompanied by a permeability transition even at high doses. Indeed, inhibition of permeability transition did not suppress the activity of tBid in vitro nor could they block Fas activation-induced, Bid-dependent hepatocyte apoptosis in cultures. Furthermore, Mg(2+), although inhibiting permeability transition, actually enhanced the ability of tBid to induce cytochrome c release. We also found that tBid did not require Bax to induce cytochrome c release in vitro. In addition, mice deficient in bax were still highly susceptible to anti-Fas-induced hepatocyte apoptosis, in which cytochrome c release was unaffected. Moreover, although Bax-induced cytochrome c release was not dependent on tBid, the two proteins could function synergistically. We conclude that Bid possesses the biochemical activity to induce cytochrome c release through a mechanism independent of mitochondrial permeability transition pore and Bax.  相似文献   

17.
Microcin J25, an antimicrobial lasso-structure peptide, induces the opening of mitochondrial permeability transition pores and the subsequent loss of cytochrome c. The microcin J25 effect is mediated by the stimulation of superoxide anion overproduction. An increased uptake of calcium is also involved in this process. Additional studies with superoxide dismutase, ascorbic acid and different specific inhibitors, such as ruthenium red, cyclosporin A and Mn(2+), allowed us to establish a time sequence of events starting with the binding of microcin J25, followed by superoxide anion overproduction, opening of mitochondrial permeability transition pores, mitochondrial swelling and the concomitant leakage of cytochrome c.  相似文献   

18.
The role of the mitochondrial permeability transition (MPT) in apoptosis and necrosis is controversial. Here we show that the MPT regulates the release of cytochrome c for apoptosis during endoplasmic reticulum (ER) stress by remodeling the cristae junction (CJ). CEM cells, HCT116 colon cancer cells, and murine embryo fibroblast cells were treated with the ER stressor thapsigargin (THG), which led to cyclophilin D-dependent mitochondrial release of the profusion GTPase optic atrophy 1 (OPA1), which controls CJ integrity, and cytochrome c, leading to apoptosis. Interference RNA knockdown of Bax blocked OPA1 and cytochrome c release after THG treatment but did not prevent the MPT, showing that Bax was essential for the release of cytochrome c by MPT. In isolated mitochondria, MPT led to OPA1 and cytochrome c release independently of voltage-dependent anion channel and the outer membrane, indicating that the MPT is an inner membrane phenomenon. Last, the MPT was regulated by the electron transport chain but not mitochondrial reactive oxygen species, since THG-induced cell death was not blocked by antioxidants and did not occur in cells lacking mitochondrial DNA. Our results show that the MPT regulates CJ remodeling for cytochrome c-dependent apoptosis induced by ER stress and that mitochondrial electron transport is indispensable for this process.  相似文献   

19.
FTY720 has immunosuppressive activity in experimental organ transplantation and shows a prompt and protracted decrease of blood T lymphocytes upon oral administration. The blood lymphocyte decrease in vivo was mainly a result of FTY720-induced apoptosis. However, this apoptotic mechanism is not well understood. We examined the mechanism of FTY720-induced apoptosis in lymphoma. Western blotting and fluorescent caspase-specific substrate revealed that caspase-3 is involved in FTY720-induced apoptosis, whereas caspase-1 is not. Apoptotic cell death was inhibited by the pan-caspase inhibitor, Z-VAD-FMK, suggesting that caspase activation is essential for FTY720-induced apoptosis. FTY720 reduced mitochondrial transmembrane potential and released cytochrome c from the mitochondria of intact cells as well as in a cell-free system even in the presence of Z-VAD-FMK. As these mitochondrial reactions occurred before caspase activation, we concluded that FTY720 directly influences mitochondrial functions. The inhibition of mitochondrial permeability transition by Bcl-2 overexpression or by chemical inhibitors prevented all apoptotic events occurring in intact cells and in a cell-free system. Moreover, using a cell-free system, FTY720 did not directly affect isolated nuclei or cytosol. These results indicate that FTY720 directly affects mitochondria and triggers permeability transition to induce further apoptotic events.  相似文献   

20.
Bcl-x(S), a pro-apoptotic member of the Bcl-2 protein family, is localized in the mitochondrial outer membrane and induces caspase-dependent and nerve growth factor (NGF)-inhibitable apoptosis in PC12 cells. The mechanism of action of Bcl-x(S) and how NGF inhibits this death are not fully understood. It is still unknown whether Bcl-x(S) induces mitochondrial cytochrome c release, and which apoptotic step NGF inhibits. We show that Bcl-x(S) induces cytochrome c release and caspase-3 activation in several cell types, and that in PC12 cells, these events are inhibited by NGF treatment. The survival effect of NGF was inhibited by inhibitors of protein kinase C (PKC), phosphatidylinositol-3-kinase (PI 3-kinase), and the mitogen-activated protein kinase kinase (MEK) inhibitors GF109203X, LY294002, and U0126. These findings show that cytochrome c release and caspase-3 activation participate in Bcl-x(S)-induced apoptosis, and that NGF inhibits Bcl-x(S)-induced apoptosis at the mitochondrial level via the PKC, PI 3-kinase, and MEK signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号