首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
Mutants of Klebsiella aerogenes Lacking Glutamate Dehydrogenase   总被引:10,自引:9,他引:1       下载免费PDF全文
A mutant of Klebsiella aerogenes lacking glutamate synthase activity (asm-200) is blocked in only one pathway of glutamate synthesis and can still use glutamate dehydrogenase to produce glutamate when ammonia in sufficient concentration, i.e., higher than 1 mM, is provided in the medium. However, a mutant that has neither glutamate synthase nor glutamate dehydrogenase activities (asm-200, gdhD1) requires glutamate. Transductants obtained by phage grown on wild-type cells of this double mutant, selected on medium containing less than 1 mM ammonia, regain glutamate synthase but not glutamate dehydrogenase. Surprisingly, these gdhD1 transductants grow as well in a variety of media as does a strain with glutamate dehydrogenase activity. Furthermore, transductions with these and other mutants indicate that the genes encoding glutamate synthase, glutamate dehydrogenase, glutamine synthetase, and citrate synthase are not closely linked.  相似文献   

2.
The steady-state concentrations of glutamine, glutamate and ammonia in the kidney cells might regulate the rate of renal xanthine dehydrogenase activity. Both glutamate and glutamine were found to be effective inhibitors of the renal xanthine dehydrogenase activity in vivo. The inhibition by glutamate depends essentially on the glutaminase inhibition.  相似文献   

3.
Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a rapid loss of GS activity as measured by either the gamma-glutamyl transferase or forward assay method with cells or extracts. No similar activity losses occurred for urease, glutamate dehydrogenase, or pyruvate kinase. The GS activity loss was not prevented by the addition of chloramphenicol and rifampin. The GS activity could be recovered by washing or incubating cells in buffer or by the addition of snake venom phosphodiesterase to cell extracts. Manganese inhibited the GS activity (forward assay) of untreated cells but stimulated the GS activity in ammonia-treated cells. Alanine, glycine, and possibly serine were inhibitory to GS activity. Optimal pH values for GS activity were 7.3 and 7.4 for the forward and gamma-glutamyl transferase assays, respectively. The glutamate dehydrogenase activity was NADPH linked and optimal in the presence of KCl. The data are consistent with an adenylylation-deadenylylation control mechanism for GS activity in S. dextrinosolvens, and the GS pathway is a major route for ammonia assimilation under low environmental ammonia levels. The rapid regulation of the ATP-requiring GS activity may be of ecological importance to this strictly anaerobic ruminal bacterium.  相似文献   

4.
Succinivibrio dextrinosolvens C18 was found to possess glutamine synthetase (GS), urease, glutamate dehydrogenase, and several other nitrogen assimilation enzymes. When grown in continuous culture under ammonia limitation, both GS and urease activities were high and glutamate dehydrogenase activity was low, but the opposite activity pattern was observed for growth in the presence of ample ammonia. The addition of high-level (15 mM) ammonium chloride to ammonia-limited cultures resulted in a rapid loss of GS activity as measured by either the gamma-glutamyl transferase or forward assay method with cells or extracts. No similar activity losses occurred for urease, glutamate dehydrogenase, or pyruvate kinase. The GS activity loss was not prevented by the addition of chloramphenicol and rifampin. The GS activity could be recovered by washing or incubating cells in buffer or by the addition of snake venom phosphodiesterase to cell extracts. Manganese inhibited the GS activity (forward assay) of untreated cells but stimulated the GS activity in ammonia-treated cells. Alanine, glycine, and possibly serine were inhibitory to GS activity. Optimal pH values for GS activity were 7.3 and 7.4 for the forward and gamma-glutamyl transferase assays, respectively. The glutamate dehydrogenase activity was NADPH linked and optimal in the presence of KCl. The data are consistent with an adenylylation-deadenylylation control mechanism for GS activity in S. dextrinosolvens, and the GS pathway is a major route for ammonia assimilation under low environmental ammonia levels. The rapid regulation of the ATP-requiring GS activity may be of ecological importance to this strictly anaerobic ruminal bacterium.  相似文献   

5.
Two strains of Cyanidium caldarium, one able to utilize nitrate as a substrate, and the other not, were tested for the presence of enzymes of ammonia assimilation. The nitrate-assimilating strain exhibits glutamate dehydrogenase activity. By contrast, the other strain lacks glutamate dehydrogenase; it possesses high alanine dehydrogenase and L-alanine aminotransferase activities which suggest that this strain may incorporate ammonia through reductive amination of pyruvate and may form glutamate from 2-ketoglutarate by a transamination reaction with alanine. Neither strain reveals glutamate synthase activity. Both strains contain similar levels of glutamine synthetase.  相似文献   

6.
The regulation of glutamate dehydrogenase (EC 1.4.1.4), glutamine synthetase (EC 6.3.1.2), and glutamate synthase (EC 2.6.1.53) was examined for cultures of Salmonella typhimurium grown with various nitrogen and amino acid sources. In contrast to the regulatory pattern observed in Klebsiella aerogenes, the glutamate dehydrogenase levels of S. typhimurium do not decrease when glutamine synthetase is derepressed during growth with limiting ammonia. Thus, it appears that the S. typhimurium glutamine synthetase does not regulate the synthesis of glutamate dehydrogenase as reported for K. aerogenes. The glutamate dehydrogenase activity does increase, however, during growth of a glutamate auxotroph with glutamate as a limiting amino acid source. The regulation of glutamate synthase levels is complex with the enzyme activity decreasing during growth with glutamate as a nitrogen source, and during growth of auxotrophs with either glutamine or glutamate as limiting amino acids.  相似文献   

7.
Urease and glutamine synthetase activities in Selenomonas ruminantium strain D were highest in cells grown in ammonia-limited, linear-growth cultures or when certain compounds other than ammonia served as the nitrogen source and limited the growth rate in batch cultures. Glutamate dehydrogenase activity was highest during glucose (energy)-limited growth or when ammonia was not growth limiting. A positive correlation (R = 0.96) between glutamine synthetase and urease activities was observed for a variety of growth conditions, and both enzyme activities were simultaneously repressed when excess ammonia was added to ammonia-limited, linear-growth cultures. The glutamate analog methionine sulfoximine (MSX), inhibited glutamine synthetase activity in vitro, but glutamate dehydrogenase, glutamate synthase, and urease activities were not affected. The addition of MSX (0.1 to 100 mM) to cultures growing with 20 mM ammonia resulted in growth rate inhibition that was dependent upon the concentration of MSX and was overcome by glutamine addition. Urease activity in MSX-inhibited cultures was increased significantly, suggesting that ammonia was not the direct repressor of urease activity. In ammonia-limited, linear-growth cultures, MSX addition resulted in growth inhibition, a decrease in GS activity, and an increase in urease activity. These results are discussed with respect to the importance of glutamine synthetase and glutamate dehydrogenase for ammonia assimilation under different growth conditions and the relationship of these enzymes to urease.  相似文献   

8.
Pathways of ammonia assimilation into glutamic acid in Bacillus azotofixans, a recently characterized nitrogen-fixing species of Bacillus, were investigated through observation by NMR spectroscopy of in vivo incorporation of 15N into glutamine and glutamic acid in the absence and presence of inhibitors of ammonia-assimilating enzymes, in combination with measurements of the specific activities of glutamate dehydrogenase, glutamine synthetase, glutamate synthase, and alanine dehydrogenase. In ammonia-grown cells, both the glutamine synthetase/glutamate synthase and the glutamate dehydrogenase pathways contribute to the assimilation of ammonia into glutamic acid. In nitrate-grown and nitrogen-fixing cells, the glutamine synthetase/glutamate synthase pathway was found to be predominant. NADPH-dependent glutamate dehydrogenase activity was detectable at low levels only in ammonia-grown and glutamate-grown cells. Thus, B. azotofixans differs from Bacillus polymyxa and Bacillus macerans, but resembles other N2-fixing prokaryotes studied previously, as to the pathway of ammonia assimilation during ammonia limitation. Implications of the results for an emerging pattern of ammonia assimilation by alternative pathways among nitrogen-fixing prokaryotes are discussed, as well as the utility of 15N NMR for measuring in vivo glutamate synthase activity in the cell.  相似文献   

9.
Barash I  Mor H  Sadon T 《Plant physiology》1975,56(6):856-858
Glutamate dehydrogenase becomes density labeled through the incorporation of deuterium and (15)N when detached oat leaves (Avena sativa var. Fulghum) are incubated in the presence of ammonia. The enzyme has been isolated by means of DEAE-cellulose chromatography, ammonium sulfate precipitation, isopycnic equilibrium centrifugation, and disc electrophoresis from leaves fed l-methionine-(35)S. Radioactivity is incorporated into isozyme 1 of glutamate dehydrogenase, whereas isozyme 2, detected only in the absence of ammonia, has not been labeled. Cycloheximide, chloramphenicol, puromycin, and 6-methyl purine inhibit the elevation of glutamate dehydrogenase by ammonia. It is suggested that the increase in glutamate dehydrogenase activity is due to de novo synthesis of isozyme 1.  相似文献   

10.
Saccharomyces cerevisiae was grown in a continuous culture at a single dilution rate with input ammonia concentrations whose effects ranged from nitrogen limitation to nitrogen excess and glucose limitation. The rate of ammonia assimilation (in millimoles per gram of cells per hour) was approximately constant. Increased extracellular ammonia concentrations are correlated with increased intracellular glutamate and glutamine concentrations, increases in levels of NAD-dependent glutamate dehydrogenase activity and its mRNA (gene GDH2), and decreases in levels of NADPH-dependent glutamate dehydrogenase activity and its mRNA (gene GDH1), as well as decreases in the levels of mRNA for the amino acid permease-encoding genes GAP1 and PUT4. The governing factor of nitrogen metabolism might be the concentration of ammonia rather than its flux.  相似文献   

11.
The mechanism of ammonia assimilation in Methanosarcina barkeri and Methanobacterium thermoautotrophicum was documented by analysis of enzyme activities, 13NH3 incorporation studies, and comparison of growth and enzyme activity levels in continuous culture. Glutamate accounted for 65 and 52% of the total amino acids in the soluble pools of M. barkeri and M. thermoautotrophicum. Both organisms contained significant activities of glutamine synthetase, glutamate synthase, glutamate oxaloacetate transaminase, and glutamate pyruvate transaminase. Hydrogen-reduced deazaflavin-factor 420 or flavin mononucleotide but not NAD, NADP, or ferredoxin was used as the electron donor for glutamate synthase in M. barkeri. Glutamate dehydrogenase activity was not detected in either organism, but alanine dehydrogenase activity was present in M. thermoautotrophicum. The in vivo activity of the glutamine synthetase was verified in M. thermoautotrophicum by analysis of 13NH3 incorporation into glutamine, glutamate, and alanine. Alanine dehydrogenase and glutamine synthetase activity varied in response to [NH4+] when M. thermoautotrophicum was cultured in a chemostat with cysteine as the sulfur source. Alanine dehydrogenase activity and growth yield (grams of cells/mole of methane) were highest when the organism was cultured with excess ammonia, whereas growth yield was lower and glutamine synthetase was maximal when ammonia was limiting.  相似文献   

12.
Two strains of Cyanidium caldarium, one able to utilize nitrate as a substrate, and the other not, were tested for the presence of enzymes of ammonia assimilation. The nitrate-assimilating strain exhibits glutamate dehydrogenase activity. By contrast, the other strain lacks glutamate dehydrogenase; it possesses high alanine dehydrogenase and l-alanine aminotransferase activities which suggest that this strain may incorporate ammonia through reductive amination of pyruvate and may form glutamate from 2-ketoglutarate by a transamination reaction with alanine. Neither strain reveals glutamate synthase activity. Both strains contain similar levels of glutamine synthetase.  相似文献   

13.
The effect of long-chain acyl-CoA on glutamate dehydrogenase activity was studied in uncoupled rabbit kidney cortex mitochondria incubated with glutamate and palmitoylcarnitine in the presence of arsenite. The mitochondrial long-chain acyl-CoA (about 2 nmol/mg of protein) accumulated in the presence of arsenite resulted in an inhibition of ammonia production from 4.1 to 1.2 nmol/min per mg of protein. Leucine and ADP, activators of glutamate dehydrogenase, did not release the inhibitory effect of long-chain acyl-CoA on glutamate deamination. In view of the presented data it seems that inhibitory effect of long-chain acyl-CoA on glutamate dehydrogenase activity may have a physiological significance.  相似文献   

14.
Oocystis sp., a unicellular green alga, contained two glutamate dehydrogenase isoenzymes: one was specific for NADH and the other for NADPH. Activity staining after gel electrophoresis indicated that one component in NADH-GDH was not specific for the cofactor and three components in NADPH-GDH. The optimal concentration of substrate, purification procedure and kinetic properties of both glutamate dehydrogenase (GDH) enzymes in vitro are presented. The kinetics of growth, nutrient removal and enzyme activities for Oocystis growing in wastewater showed that ammonia was preferentially utilized over nitrate and the medium was depleted before the maximum population was obtained in indoor culture. There was a sharp increase in NADPH-GDH activity following the exhaustion of ammonia from the medium but NADH-GDH activity remained unchanged. The NADPH-GDH activity at the outset increased exponentially with time in greenhouse culture but then decreased sharply accompained by a rapid increase in biomass and nitrite concentration. The K(m) values for ammonia in this algal GDH was high, while glutamate synthase activity was not detected; this suggests that Oocystis may adapt to conditions of ammonia limitation by producing large quantities of NADPH-GDH instead of using glutamate synthase pathway.  相似文献   

15.
Aspects of inorganic nitrogen assimilation in yeasts   总被引:1,自引:0,他引:1  
Cultures of Candida utilis utilise glutamate in preference to ammonia and ammonia in preference to nitrate. The nitrate reductase of this organism is induced by nitrate and repressed in cultures grown on glutamate or ammonia. Nitrate-grown cultures of C. utilis, irrespective of the medium nitrate concentration, behave as though nitrogen-limited. In contrast to C. utilis, Saccharomyces cerevisiae utilises ammonia in preference to glutamate. In eight yeasts studied the highest cellular contents of biosynthetic NADP-linked glutamate dehydrogenase were found in batch cultures containing low concentrations of ammonia or in nitrogen-limited chemostat cultures. NAD-linked glutamate dehydrogenase activity was detected in extracts of cells grown in the presence of glutamate but not in those grown in the presence of ammonia.  相似文献   

16.
A new, continuous 96-well plate spectrophotometric assay for the branched-chain amino acid aminotransferases is described. Transamination of L-leucine with alpha-ketoglutarate results in formation of alpha-ketoisocaproate, which is reductively aminated back to L-leucine by leucine dehydrogenase in the presence of ammonia and NADH. The disappearance of absorbance at 340 nm due to NADH oxidation is measured continuously. The specific activities obtained by this procedure for the highly purified human mitochondrial and cytosolic isoforms of BCAT compare favorably with those obtained by a commonly used radiochemical procedure, which measures transamination between alpha-ketoiso[1-14C]valerate and L-isoleucine. Due to the presence of glutamate dehydrogenase substrates (alpha-ketoglutarate, ammonia, and NADH) and L-leucine (an activator of glutamate dehydrogenase) in the standard assay mixture, interference with the measurement of BCAT activity in tissue homogenates by glutamate dehydrogenase is observed. However, by limiting the amount of ammonia and including the inhibitor GTP in the assay mixture, the interference from the glutamate dehydrogenase reaction is minimized. By comparing the rate of loss of absorbance at 340 nm in the modified spectrophotometric assay mixture containing leucine dehydrogenase to that obtained in the modified spectrophotometric assay mixture lacking leucine dehydrogenase, it is possible to measure BCAT activity in microliter amounts of rat tissue homogenates. The specific activities of BCAT in homogenates of selected rat tissues obtained by this method are comparable to those obtained previously by the radiochemical procedure.  相似文献   

17.
Saccharomyces cerevisiae contains two distinct l-glutamate dehydrogenases. These enzymes are affected in a reciprocal fashion by growth on ammonia or dicarboxylic amino acids as the nitrogen source. The specific activity of the nicotinamide adenine dinucleotide phosphate (NADP) (anabolic) enzyme is highest in ammonia-grown cells and is reduced in cells grown on glutamate or aspartate. Conversely, the specific activity of the nicotinamide adenine dinucleotide (NAD) (catabolic) glutamate dehydrogenase is highest in cells grown on glutamate or aspartate and is much lower in cells grown on ammonia. The specific activity of both enzymes is very low in nitrogen-starved yeast. Addition of the ammonia analogue methylamine to the growth medium reduces the specific activity of the NAD-dependent enzyme and increases the specific activity of the NADP-dependent enzyme.  相似文献   

18.
Bacillus fastidiosus was able to grow on glycerol as a carbon source when allantoin or urate was used as nitrogen source. The primary assimilatory enzyme for glycerol was glycerol kinase; glycerol dehydrogenase could not be detected. The glycerol kinase activity was increased 30-fold in allantoin/glycerol-grown cells as compared to alantoin-grown cells. Under both growth conditions high levels of glutamate dehydrogenase were found. Glutamine synthetase and glutamate synthase activities could not be demonstrated, while low levels of alanine dehydrogenase were present. It is concluded that B. fastidiosus assimilates ammonia by the NADP-dependent glutamate dehydrogenase.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

19.
Ammonia assimilation by rhizobium cultures and bacteroids.   总被引:23,自引:0,他引:23  
The enzymes involved in the assimilation of ammonia by free-living cultures of Rhizobium spp. are glutamine synthetase (EC. 6.o.I.2), glutamate synthase (L-glutamine:2-oxoglutarate amino transferase) and glutamate dehydrogenase (ED I.4.I.4). Under conditions of ammonia or nitrate limitation in a chemostat the assimilation of ammonia by cultures of R. leguminosarum, R. trifolii and R. japonicum proceeded via glutamine synthetase and glutamate synthase. Under glucose limitation and with an excess of inorganic nitrogen, ammonia was assimilated via glutamate dehydrogenase, neither glutamine synthetase nor glutamate synthase activities being detected in extracts. The coenzyme specificity of glutamate synthase varied according to species, being linked to NADP for the fast-growing R. leguminosarum, R. melitoti, R. phaseoli and R. trifolii but to NAD for the slow-growing R. japonicum and R. lupini. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase activities were assayed in sonicated bacteroid preparations and in the nodule supernatants of Glycine max, Vicia faba, Pisum sativum, Lupinus luteus, Medicago sativa, Phaseolus coccineus and P. vulgaris nodules. All bacteroid preparations, except those from M. sativa and P. coccineus, contained glutamate synthase but substantial activities were found only in Glycine max and Lupinus luteus. The glutamine synthetase activities of bacteroids were low, although high activities were found in all the nodule supernatants. Glutamate dehydrogenase activity was present in all bacteroid samples examined. There was no evidence for the operation of the glutamine synthetase/glutamate synthase system in ammonia assimilation in root nodules, suggesting that ammonia produced by nitrogen fixation in the bacteroid is assimilated by enzymes of the plant system.  相似文献   

20.
Yeast cells growing on mineral medium plus ammonia and glucose contained high levels of nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase activity, as measured in crude extracts. After suspension of cells in fresh medium lacking glucose, there was a loss of the glutamate dehydrogenase activity. Loss of activity was inhibited by 2,4-dinitrophenol, sodium azide, iodoacetic acid, and cycloheximide. The enzyme activity was restored when glucose was added back to the medium, and this recovery was fully prevented in the presence of cycloheximide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号