首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the brains of Alzheimer's disease (AD) patients, fibrillar amyloid-beta peptides (Abeta) are markedly accumulated and the microglia associate with the amyloid plaques. However, the regulation of Abeta clearance is still unclear. In the present study, we examined the effect of a chaperone protein BiP/GRP78 on the microglial function. Exogenous addition of recombinant BiP/GRP78 induced the production of cytokines such as interleukin-6 and tumor necrosis factor-alpha, but heat treatment of this protein abolished the activity. Although Abeta(1-42) did not induce cytokine production, it was taken up by the microglia. In addition, the amount of Abeta(1-42) uptake and the number of microglia that phagocytosed Abeta(1-42) were markedly increased by BiP/GRP78. Exogenous BiP/GRP78 also translocated to the endoplasmic reticulum (ER). These results suggest that BiP/GRP78 stimulates Abeta clearance in the microglia, and that dysfunction in the ER may cause the accumulation of extracellular Abeta(1-42).  相似文献   

2.
One of the major pathological features of Alzheimer's disease (AD) is the presence of extracellular amyloid plaques that are composed predominantly of the amyloid-beta peptide (Abeta). Diffuse plaques associated with AD are composed predominantly of Abeta42, whereas senile plaques contain both Abeta40 and Abeta42. Recently, it has been suggested that diffuse plaque formation is initiated as a plasma membrane-bound Abeta species and that Abeta42 is the critical component. In order to investigate this hypothesis, we have examined Abeta42-membrane interactions using in situ atomic force microscopy and fluorescence spectroscopy. Our studies demonstrate the association of Abeta42 with planar bilayers composed of total brain lipids, which results initially in peptide aggregation and then fibre formation. Modulation of the cholesterol content is correlated with the extent of Abeta42-assembly on the bilayer surface. Although Abeta42 was not visualized directly on cholesterol-depleted bilayers, fluorescence anisotropy and fluorimetry demonstrate Abeta42-induced membrane changes. Our results demonstrate that the composition of the lipid bilayer governs the outcome of Abeta interactions.  相似文献   

3.
Abnormal accumulation of the amyloid-beta peptide (Abeta) in the brain appears crucial to pathogenesis in all forms of Alzheimer disease (AD), but the underlying mechanisms in the sporadic forms of AD remain unknown. Transforming growth factor beta1 (TGF-beta1), a key regulator of the brain's responses to injury and inflammation, has been implicated in Abeta deposition in vivo. Here we demonstrate that a modest increase in astroglial TGF-beta1 production in aged transgenic mice expressing the human beta-amyloid precursor protein (hAPP) results in a three-fold reduction in the number of parenchymal amyloid plaques, a 50% reduction in the overall Abeta load in the hippocampus and neocortex, and a decrease in the number of dystrophic neurites. In mice expressing hAPP and TGF-beta1, Abeta accumulated substantially in cerebral blood vessels, but not in parenchymal plaques. In human cases of AD, Abeta immunoreactivity associated with parenchymal plaques was inversely correlated with Abeta in blood vessels and cortical TGF-beta1 mRNA levels. The reduction of parenchymal plaques in hAPP/TGF-beta1 mice was associated with a strong activation of microglia and an increase in inflammatory mediators. Recombinant TGF-beta1 stimulated Abeta clearance in microglial cell cultures. These results demonstrate that TGF-beta1 is an important modifier of amyloid deposition in vivo and indicate that TGF-beta1 might promote microglial processes that inhibit the accumulation of Abeta in the brain parenchyma.  相似文献   

4.
Microglial activation is an important pathological component in brains of patients with Alzheimer's disease (AD), and fibrillar amyloid-beta (Abeta) peptides play an important role in microglial activation in AD. However, mechanisms by which Abeta peptides induce the activation of microglia are poorly understood. The present study underlines the importance of TLR2 in mediating Abeta peptide-induced activation of microglia. Fibrillar Abeta1-42 peptides induced the expression of inducible NO synthase, proinflammatory cytokines (TNF-alpha, IL-1beta, and IL-6), and integrin markers (CD11b, CD11c, and CD68) in mouse primary microglia and BV-2 microglial cells. However, either antisense knockdown of TLR2 or functional blocking Abs against TLR2 suppressed Abeta1-42-induced expression of proinflammatory molecules and integrin markers in microglia. Abeta1-42 peptides were also unable to induce the expression of proinflammatory molecules and increase the expression of CD11b in microglia isolated from TLR2(-/-) mice. Finally, the inability of Abeta1-42 peptides to induce the expression of inducible NO synthase and to stimulate the expression of CD11b in vivo in the cortex of TLR2(-/-) mice highlights the importance of TLR2 in Abeta-induced microglial activation. In addition, ligation of TLR2 alone was also sufficient to induce microglial activation. Consistent to the importance of MyD88 in mediating the function of various TLRs, antisense knockdown of MyD88 also inhibited Abeta1-42 peptide-induced expression of proinflammatory molecules. Taken together, these studies delineate a novel role of TLR2 signaling pathway in mediating fibrillar Abeta peptide-induced activation of microglia.  相似文献   

5.
We have previously reported that amyloid Abeta, the major component of senile plaques in Alzheimer's disease (AD), binds Cu with high affinity via histidine and tyrosine residues [Atwood, C. S., et al. (1998) J. Biol. Chem. 273, 12817-12826; Atwood, C. S., et al. (2000) J. Neurochem. 75, 1219-1233] and produces H(2)O(2) by catalyzing the reduction of Cu(II) or Fe(III) [Huang, X., et al. (1999) Biochemistry 38, 7609-7616; Huang, X., et al. (1999) J. Biol. Chem. 274, 37111-37116]. Incubation with Cu induces the SDS-resistant oligomerization of Abeta [Atwood, C. S., et al. (2000) J. Neurochem. 75, 1219-1233], a feature characteristic of neurotoxic soluble Abeta extracted from the AD brain. Since residues coordinating Cu are most vulnerable to oxidation, we investigated whether modifications of these residues were responsible for Abeta cross-linking. SDS-resistant oligomerization of Abeta caused by incubation with Cu was found to induce a fluorescence signal characteristic of tyrosine cross-linking. Using ESI-MS and a dityrosine specific antibody, we confirmed that Cu(II) (at concentrations lower than that associated with amyloid plaques) induces the generation of dityrosine-cross-linked, SDS-resistant oligomers of human, but not rat, Abeta peptides. The addition of H2O2 strongly promoted Cu-induced dityrosine cross-linking of Abeta1-28, Abeta1-40, and Abeta1-42, suggesting that the oxidative coupling is initiated by interaction of H2O2 with a Cu(II) tyrosinate. The dityrosine modification is significant since it is highly resistant to proteolysis and is known to play a role in increasing structural strength. Given the elevated concentration of Cu in senile plaques, our results suggest that Cu interactions with Abeta could be responsible for causing the covalent cross-linking of Abeta in these structures.  相似文献   

6.
7.
The increased accumulation of activated microglia containing amyloid beta protein (Abeta) around senile plaques is a common pathological feature in subjects with Alzheimer's disease (AD). Much less is known, however, of intracellular signal transduction pathways for microglial activation in response to Abeta. We investigated intracellular signaling in response to Abeta stimulation in primary cultured rat microglia. We found that the kinase activity of PKC-delta but not that of PKC-alpha or -epsilon is increased by stimulation of microglia with Abeta, with a striking tyrosine phosphorylation of PKC-delta. In microglia stimulated with Abeta, tyrosine phosphorylation of PKC-delta was evident at the membrane fraction without an overt translocation of PKC-delta. PKC-delta co-immunoprecipitated with MARCKS from microglia stimulated with Abeta. Abeta induced translocation of MARCKS from the membrane fraction to the cytosolic fraction. Immunocytochemical analysis revealed that phosphorylated MARCKS accumulated in the cytoplasm, particularly at the perinuclear region in microglia treated with Abeta. Taken together with our previous observations that Abeta-induced phosphorylation of MARCKS and chemotaxis of microglia are inhibited by either tyrosine kinase or PKC inhibitors, our results provide evidence that Abeta induces phosphorylation and translocation of MARCKS through the tyrosine kinase-PKC-delta signaling pathway in microglia.  相似文献   

8.
Abeta peptide is the major component of senile plaques (SP), which accumulate in the brain of a patient with Alzheimer's disease (AD). A recent report indicated that isoflurane enhanced Abeta oligomerization (micro-aggregation) and subsequent cytotoxicity of the Abeta peptide. A separate study showed that a clinically relevant concentration of isoflurane induces apoptosis and increases Abeta production in a human neuroglioma cell line. In vitro studies have indicated that halothane interacts specifically with Abeta peptide to induce oligomerization and that Abeta42 oligomerizes faster than Abeta40. The specific interactions of isoflurane, propofol, and thiopental with uniformly 15N labeled Abeta40 and Abeta42 peptide were investigated using multidimensional nuclear magnetic resonance (NMR) experiments. We found that isoflurane and propofol (at higher concentration) interact with Abeta40 peptides and induce Abeta oligomerization. Thiopental does not interact with specific residues (G29, A30, and I31) of Abeta40; hence, the peptide remains in the monomeric form. On the basis of our NMR study, thiopental does not oligomerize Abeta40 even at higher concentrations.  相似文献   

9.
The concentration of beta-amyloid peptide (Abeta), x-42 or x-40 amino acids long, increases in brain with the progression Alzheimer's disease (AD). These peptides are deposited extracellularly as highly insoluble fibrils that form densities of amyloid plaques. Abeta fibrillization is a complex polymerization process preceded by the formation of oligomeric and prefibrillar Abeta intermediates. In some of our in vitro studies, in which the kinetics of intermediate steps of fibril formation were examined, we used concentrations of synthetic Abeta that exceed what is normally employed in fibrillization studies, 300-600 microM. At these concentrations, in a cell free system and under physiological conditions, Abeta 1-40 peptide (Abeta40) forms fibrils that spontaneously assemble into clearly defined spheres, "betaamy balls", with diameters of approximately 20-200 microm. These supramolecular structures show weak birefringence with Congo red staining and high stability with prolonged incubation times (at least 2 weeks) at 30 degrees C, freezing, and dilution in H(2)O. At 600 microM, they are detected after incubation for approximately 20 h. Abeta peptide 1-42 (Abeta42) lacks the ability to form betaamy balls but accelerates Abeta40 betaamy ball formation at low stoichiometric levels (1:20 Abeta42:Abeta40 ratio). Abeta42 levels above this (=10-50% w/w) impede Abeta40 betaamy ball formation. Using light (LM) and electron microscopy (EM), this study examines the gross morphology and ultrastructure of Abeta40 betaamy balls and their time course of formation, in the absence and presence of Abeta42, along with some stability measures. As spheres of a misfolded protein, betaamy balls resemble both AD Abeta senile plaques and neuronal inclusion bodies associated with other neurodegenerative diseases.  相似文献   

10.
Alzheimer's disease (AD) is neuropathologically characterized by depositions of extracellular amyloid and intracellular neurofibrillary tangles, associated with loss of neurons in the brain. Amyloid beta-peptide (Abeta) is the major component of senile plaques and is considered to have a causal role in the development and progress of AD. Several lines of evidence suggest that enhanced oxidative stress and inflammation play important roles in the pathogenesis or progression of AD. The present study aimed to investigate the protective effects of ethyl-4-hydroxy-3-methoxycinnamic acid (FAEE), a phenolic compound which shows antioxidant and anti-inflammatory activity, on Abeta(1-42)-induced oxidative stress and neurotoxicity. We hypothesized that the structure of FAEE would facilitate radical scavenging and may induce protective proteins. Abeta(1-42) decreases cell viability, which was correlated with increased free radical formation, protein oxidation (protein carbonyl, 3-nitrotyrosine), lipid peroxidation (4-hydroxy-2-trans-nonenal) and inducible nitric oxide synthase. Pre-treatment of primary hippocampal cultures with FAEE significantly attenuated Abeta(1-42)-induced cytotoxicity, intracellular reactive oxygen species accumulation, protein oxidation, lipid peroxidation and induction of inducible nitric oxide synthase. Treatment of neurons with Abeta(1-42) increases levels of heme oxygenase-1 and heat shock protein 72. Consistent with a cellular stress response to the Abeta(1-42)-induced oxidative stress, FAEE treatment increases the levels of heme oxygenase-1 and heat shock protein 72, which may be regulated by oxidative stresses in a coordinated manner and play a pivotal role in the cytoprotection of neuronal cells against Abeta(1-42)-induced toxicity. These results suggest that FAEE exerts protective effects against Abeta(1-42) toxicity by modulating oxidative stress directly and by inducing protective genes. These findings suggest that FAEE could potentially be of importance for the treatment of AD and other oxidative stress-related diseases.  相似文献   

11.
12.
Neurodegeneration in Alzheimer's disease (AD) is associated with many features of the immune system. For example, cytokines such as IL-6, synthesized by microglia and astrocytes, are associated with senile plaques. To further study the role of cytokines in early stage AD neurodegeneration, an organotypic mouse brain slice culture system with microglia and astrocytes was developed. Amyloid-beta(Abeta1-40) induced the secretion of both IL-1beta and IL-6. Melatonin, an antioxidant and pineal hormone, reduced interleukin secretion in a concentration dependent manner. We also observed that melatonin, alone, had no effect on IL-1beta secretion but at a concentration of 500 microM induced the secretion of IL-6. This organotypic slice system can be used to study the early role of immune system molecules on neurodegeneration.  相似文献   

13.
This study aims to discuss the effect of preventing pathological changes and cognitive degeneration of Tg2576 mice by inoculating the subunit fragment of Aβ vaccine. Thirty-two Tg2576 mice were randomly divided into four groups, each having eight mice: Group I, the control group, inoculated with adjuvants; Group II, the Aβ42 group, inoculated with Aβ42 vaccine; Group III, the Aβ1―15 group, inoculated with Aβ1―15 vaccine; and Group IV, the Aβ36―42 group, inoculated with Aβ36―42 vaccine. The titer of the serum anti-body against Aβ42 (Group II) was significantly higher than that of the control group (Group I), and a low level of antibodies could be detected in the brain homogenate in the three vaccine-inoculated groups. Morris water maze test showed that the Aβ42 group, Aβ1―15 group and Aβ36―42 group were obviously im-proved compared with the control group. The cultured splenocytes sampled from each group were induced by Con A or their respective antigens, and the cell proliferation of the three vaccine-inoculated groups was significantly higher than that of the control group. In the Aβ42 group, IL2 and IFN-γ were relatively low and IL4 and IL10 were relatively high. By contrast, IL4 and IL10 were much higher in the Aβ1―15 group and IL2 and IFN-γ were much higher in the Aβ36―42 group. The immunohistochemical test showed a large number of senile plaques in the brain cortex and hippocampus of the mice in the con-trol group, no senile plaque in the brain of the Aβ1―15 group and Aβ42 group mice, and a small number of senile plaques in the brain of the Aβ36―42 group mice. The results suggest that the subunit fragment of Aβ1―15 vaccine could prevent not only cognitive and behavioral degeneration but also Aβ deposition and formation of senile plaques in Tg2576 mice.  相似文献   

14.
Alzheimer's disease is marked by progressive accumulation of amyloid beta-peptide (Abeta) which appears to trigger neurotoxic and inflammatory cascades. Substantial activation of microglia as part of a local innate immune response is prominent at sites of Abeta plaques in the CNS. However, the role of activated microglia as Abeta APCs and the induction of adaptive immune responses has not been investigated. We have used primary microglial cultures to characterize Abeta-Ag presentation and interaction with Abeta-specific T cells. We found that IFN-gamma-treated microglia serve as efficient Abeta APCs of both Abeta1-40 and Abeta1-42, mediating CD86-dependent proliferation of Abeta-reactive T cells. When cultured with Th1 and Th2 subsets of Abeta-reactive T cells, Th1, but not Th2, cells, underwent apoptosis after stimulation, which was accompanied by increased levels of IFN-gamma, NO, and caspase-3. T cell apoptosis was prevented in the presence of an inducible NO synthase type 2 inhibitor. Microglia-mediated proliferation of Abeta-reactive Th2 cells was associated with expression of the Th2 cytokines IL-4 and IL-10, which counterbalanced the toxic levels of NO induced by Abeta. Our results demonstrate NO-dependent apoptosis of T cells by Abeta-stimulated microglia which may enhance CNS innate immune responses and neurotoxicity in Alzheimer's disease. Secretion of NO by stimulated microglia may underlie a more general pathway of T cell death in the CNS seen in neurodegenerative diseases. Furthermore, Th2 type T cell responses may have a beneficial effect on this process by down-regulation of NO and the proinflammatory environment.  相似文献   

15.
Microglia are the principal immune cells of the brain. In Alzheimer disease, these brain mononuclear phagocytes are recruited from the blood and accumulate in senile plaques. However, the role of microglia in Alzheimer disease has not been resolved. Microglia may be neuroprotective by phagocytosing amyloid-beta (Abeta), but their activation and the secretion of neurotoxins may also cause neurodegeneration. Ccr2 is a chemokine receptor expressed on microglia, which mediates the accumulation of mononuclear phagocytes at sites of inflammation. Here we show that Ccr2 deficiency accelerates early disease progression and markedly impairs microglial accumulation in a transgenic mouse model of Alzheimer disease (Tg2576). Alzheimer disease mice deficient in Ccr2 accumulated Abeta earlier and died prematurely, in a manner that correlated with Ccr2 gene dosage, indicating that absence of early microglial accumulation leads to decreased Abeta clearance and increased mortality. Thus, Ccr2-dependent microglial accumulation plays a protective role in the early stages of Alzheimer disease by promoting Abeta clearance.  相似文献   

16.
AD (Alzheimer's disease) is a neurodegenerative disorder characterized by self-assembly and amyloid formation of the 39-43 residue long Abeta (amyloid-beta)-peptide. The most abundant species, Abeta(1-40) and Abeta(1-42), are both present within senile plaques, but Abeta(1-42) peptides are considerably more prone to self-aggregation and are also essential for the development of AD. To understand the molecular and pathological mechanisms behind AD, a detailed knowledge of the amyloid structures of Abeta-peptides is vital. In the present study we have used quenched hydrogen/deuterium-exchange NMR experiments to probe the structure of Abeta(1-40) fibrils. The fibrils were prepared and analysed identically as in our previous study on Abeta(1-42) fibrils, allowing a direct comparison of the two fibrillar structures. The solvent protection pattern of Abeta(1-40) fibrils revealed two well-protected regions, consistent with a structural arrangement of two beta-strands connected with a bend. This protection pattern partly resembles the pattern found in Abeta(1-42) fibrils, but the Abeta(1-40) fibrils display a significantly increased protection for the N-terminal residues Phe4-His14, suggesting that additional secondary structure is formed in this region. In contrast, the C-terminal residues Gly37-Val40 show a reduced protection that suggests a loss of secondary structure in this region and an altered filament assembly. The differences between the present study and other similar investigations suggest that subtle variations in fibril-preparation conditions may significantly affect the fibrillar architecture.  相似文献   

17.
The deposition of amyloid-beta peptides (Abeta) in senile plaques (SPs) is a central pathological feature of Alzheimer's disease (AD). Since SPs are composed predominantly of Abeta1-42, which is more amyloidogenic in vitro, the enzymes involved in generating Abeta1-42 may be particularly important to the pathogenesis of AD. In contrast to Abeta1-40, which is generated in the trans-Golgi network and other cytoplasmic organelles, intracellular Abeta1-42 is produced in the endoplasmic reticulum/intermediate compartment (ER/IC), where it accumulates in a stable insoluble pool. Since this pool of insoluble Abeta1-42 may play a critical role in AD amyloidogenesis, we sought to determine how the production of intracellular Abeta is regulated. Surprisingly, the production of insoluble intracellular Abeta1-42 was increased by a putative gamma-secretase inhibitor as well as by an inhibitor of the proteasome. We further demonstrate that this increased generation of Abeta1-42 in the ER/IC is due to a reduction in the turnover of Abeta-containing APP C-terminal fragments. We conclude that the proteasome is a novel site for degradation of ER/IC-generated APP fragments. Proteasome inhibitors may augment the availability of APP C-terminal fragments for gamma-secretase cleavage and thereby increase production of Abeta1-42 in the ER/IC. Based on the organelle-specific differences in the generation of Abeta by gamma-secretase, we conclude that intracellular ER/IC-generated Abeta1-42 and secreted Abeta1-40 are produced by different gamma-secretases. Further, the fact that a putative gamma-secretase inhibitor had opposite effects on the production of secreted and intracellular Abeta may have important implications for AD drug design.  相似文献   

18.
Amyloid-beta peptide (Abeta) has a key role in the pathogenesis of Alzheimer disease (AD). Immunization with Abeta in a transgenic mouse model of AD reduces both age-related accumulation of Abeta in the brain and associated cognitive impairment. Here we present the first analysis of human neuropathology after immunization with Abeta (AN-1792). Comparison with unimmunized cases of AD (n = 7) revealed the following unusual features in the immunized case, despite diagnostic neuropathological features of AD: (i) there were extensive areas of neocortex with very few Abeta plaques; (ii) those areas of cortex that were devoid of Abeta plaques contained densities of tangles, neuropil threads and cerebral amyloid angiopathy (CAA) similar to unimmunized AD, but lacked plaque-associated dystrophic neurites and astrocyte clusters; (iii) in some regions devoid of plaques, Abeta-immunoreactivity was associated with microglia; (iv) T-lymphocyte meningoencephalitis was present; and (v) cerebral white matter showed infiltration by macrophages. Findings (i)-(iii) strongly resemble the changes seen after Abeta immunotherapy in mouse models of AD and suggest that the immune response generated against the peptide elicited clearance of Abeta plaques in this patient. The T-lymphocyte meningoencephalitis is likely to correspond to the side effect seen in some other patients who received AN-1792 (refs. 7-9).  相似文献   

19.
Zinc, iron and copper are concentrated in senile plaques of Alzheimer disease. Copper and iron catalyze the Fenton-Haber-Weiss reaction, which likely contributes to oxidative stress in neuronal cells. In this study, we found that ascorbate oxidase activity and the intensity of ascorbate radicals measured using ESR spectroscopy, generated by free Cu(II), was decreased in the presence of amyloid-beta (Abeta), the major component of senile plaques. Specifically, the ascorbate oxidase activity was strongly inhibited (85% decrease) in the presence of Abeta1-16 or Abeta1-42, whereas it was only slightly inhibited in the presence of Abeta1-12 or Abeta25-35 (<20% inhibition). Ascorbate-dependent hydroxyl radical generation by free Cu(II) decreased in the presence of Abeta in the identical order of Abeta1-42, Abeta1-16 > Abeta1-12 and was abolished in the presence of 2-fold molar excess glycylhystidyllysine (GHK). Ascorbate oxidase activity and ascorbate-dependent hydroxyl radical generation by free Fe(III) were inhibited by Abeta1-42, Abeta1-16, and Abeta1-12. Although Cu(II)-Abeta shows a significant SOD-like activity, the rate constant for the reaction of superoxide with Cu(II)-Abeta was much slower than that with SOD. Overall, our results suggest that His6, His13, and His14 residues of Abeta1-42 control the redox activity of transition metals present in senile plaques.  相似文献   

20.
Abeta peptide is the major component of senile plaques (SP) which accumulates in AD (Alzheimer's disease) brain. Reports from different laboratories indicate that anesthetics interact with Abeta peptide and induce Abeta oligomerization. The molecular mechanism of Abeta peptide interactions with these anesthetics was not determined. We report molecular details for the interactions of uniformly (15)N labeled Abeta40 with different anesthetics using 2D nuclear magnetic resonance (NMR) experiments. At high concentrations both isoflurane and propofol perturb critical amino acid residues (G29, A30 and I31) of Abeta peptide located in the hinge region leading to Abeta oligomerization. In contrast, these three specific residues do not interact with thiopental and subsequently no Abeta oligomerization was observed. However, studies with combined anesthetics (thiopental and halothane), showed perturbation of these residues (G29, A30 and I31) and subsequently Abeta oligomerization was found. Perturbation of these specific Abeta residues (G29, A30 and I31) by different anesthetics could play an important role to induce Abeta oligomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号