首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M Umeda  M Saito 《Mutation research》1975,30(2):249-254
The mutagenicity of dimethylnitrosamine (DMN) to mammalian cells was investigated using a metabolic activation system. Mutation from 8-azaguanine (8AG) sensitivity to resistance in FM3A cells, a cell line derived from C3H mouse mammary carcinoma, was found only in the presence of dimethylnitrosamine, mouse liver microsomes and cofactors. The different inducibility of the mutation was shown by the use of liver microsomes from different strains of mouse.  相似文献   

2.
The decrease in microbial mutagenicity of N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) and N-methyl-N-nitrosourea (MNU) was compared in an animal mediation with rats and in direct incubation with human as well as rat blood and blood components. The mutagenic activity was assayed by reverse mutation from streptomycin (SM) dependence to non-dependence in Escherichia coli, strain Sd-B (TC). The mutagenic response curves of both MNNG and MNU were approximately linear and parallel at non-cytotoxic concentrations. However, the mutagenic capabilities of MNNG were estimated to be 10-fold more potent than those of MNU. The mutagenic activity in blood and liver preparations from rats killed immediately after intravenous injection of MNNG, 50 mg/kg, was negative. Results with MNU, 100 mg/kg, were positive in both cases.For the detection of mutagenicity, blood was diluted 50 times for the final testing mixture (1 ml) to avoid bactericidal effects of the blood itself. When a larger amount of liver preparation was used in the tests, and diluted 8 times, mutagenic activity was still detected 15 min after injection of MNU, 80 mg/kg. Comparisons of the diminished rate of mutagenicity between MNNG and MNU during certain periods of incubation with blood indicated that MNNG was inactivated much more rapidly than MNU with both human and rat blood. Plasma showed a moderate inactivating effect on both MNNG and MNU. Red blood cells inactivated MNNG at a remarkably rapid rate similar to that of whole blood, but was less effective on MNU. In further experiments with red- cell components, the cell contents inactivated both MNNG and MNU at rates similar to those with red cells, but cell membrane had absolutely no effect in decreasing the mutagenicity in either MNNG or MNU.  相似文献   

3.
The effect of dimethylnitrosamine (DMN) on rat liver microsomal detoxication was studied, using the non-carcinogenic aromatic amine N,N-dimethylaniline (dimethylaniline) as substrate. Prior to the preparation of microsomes, the rat liver was exposed to DMN either in vivo (by i.p. injection) or in the isolated liver perfusion system (by addition to the perfusion medium). DMN treatment in vivo (20 mg/kg body wt.) caused a 40% increase in dimethylaniline N-oxygenation and a 30% decrease in dimethylaniline C-oxygenation. When DMN was added to the perfusion medium to a final concentration of 5 or 25 mM, a similar effect was observed. With the 5 mM dose, C-oxygenation was decreased by 20% with a non-significant increase in N-oxygenation. The higher dose caused a 50% increase in N-oxygenation, whereas the decrease in C-oxygenation remained at 20%.When microsomes were incubated with both DMN (5 mM) and dimethylaniline (5 mM) in the system, a small but significant decrease in both N- and C-oxygenation of dimethylaniline was observed. The effect of DMN on the amino acid incorporation into liver and plasma proteins was also studied in the liver perfusion system. The synthesis of both liver and plasma proteins was reduced by DMN.  相似文献   

4.
Sprout inhibition of onion bulbs can be effectively accomplished by low doses of radiation [2,3]. However, wholesomeness data on irradiated onions, particularly with respect to their mutagenic activity, are still insufficient for evaluation [6]. Therefore we examined the mutagenic activity of irradiated onions in bacterial systems. Because onion bulbs contain a considerable amount of free amino acids, we used indicator strains carrying the marker for mutagenicity other than the amino acid requirement.In this paper we describe the results on irradiated onions. We used tests with solid and liquid media, assaying for the streptomycin (SM) dependence in a strain having a tetracycline (TC)-resistance factor, as well as DNA repair tests using two sets of indicator strains.  相似文献   

5.
Chromate metabolism in liver microsomes   总被引:3,自引:0,他引:3  
The carcinogenicity and mutagenicity of various chromium compounds have been found to be markedly dependent on the oxidation state of the metal. The carcinogen chromate was reduced to chromium(III) by rat liver microsomes in vitro. Metabolism of chromate by microsomal enzymes occurred only in the presence of either NADPH or NADH as cofactor. The chromium(III) generated upon metabolism formed a complex with the NADP+ cofactor. Significant binding of chromium to DNA occurred only when chromate was incubated in the presence of microsomes and NADPH. Specific inhibitors of the mixed function oxidase enzymes, 2′-AMP, metyrapone, and carbon monoxide, inhibited the rate of reduction of chromate by microsomes and NADPH. The possible relationship of metabolism of chromate and its interaction with nucleic acids to its carcinogenicity and mutagenicity is discussed.  相似文献   

6.
15 nitrobenzofurazans and 10 nitrobenzofuroxans synthesized primarily for testing as potential anti-rheumatic drugs were also tested for mutagenicity in Salmonella typhimurium strains TA98 and TA100. The method used involved placing each compound in a "well" cut out of a plate of selective medium previously seeded with the appropriate tester strain, and then adding a rat liver microsome/cofactor mixture to one of the two wells on each plate. This method is considerably cheaper and more convenient than the conventional agar overlay technique, but in the present series of experiments failed to detect 4 compounds which could be detected by the overlay technique. Using a combination of the two techniques, 21 of the 25 compounds tested were found to be mutagenic. All 10 benzofuroxans and 9 of the 15 benzofurazans were detected as direct-acting mutagens with at least one of the two tester strains. Two of the benzofurazans gave positive results only in the presence of rat liver microsomes, and hence are pro-mutagens. One of the 4 benzofurazans which gave negative results for mutagenicity in these tests was found to be an efficient inhibitor of a neutral protease activity found in rheumatic synovial fluid, and may therefore have some potential as an anti-rheumatic drug.  相似文献   

7.
The R21(TC) factor, obtained by transduction of the R10(TC.CM.SM.SA) factor with phage ε to group E Salmonella, is not transferable by the normal conjugal process. However, when R21(TC)+ transductants are infected with the F13 factor, the nontransferable R21(TC) factor acquires transmissibility by conjugation. R21(TC)+ conjugants of Escherichia coli K-12, to which only the R21(TC) factor was transmitted by cell-to-cell contact from an F′ R+ donor, were still unable to transfer their R21(TC) factor by conjugation. In crosses between Hfr and FE. coli K-12 strains containing R21(TC), the gene responsible for tetracycline resistance was located on the E. coli K-12 chromosome between lac and pro, near lac.  相似文献   

8.
The bacterial mutagenicity of 2-nitrodibenzo-p-dioxin, a mixture of 2-nitro-7-chloro- and 2-nitro-8-chlorodibenzo-p-dioxin, 7-nitro-2,3-dichloro-, 8-nitro-2,3,7-trichloro-, 2-nitro-1,3,7,8-tetrachloro- and 3-nitro-1,2,4,7,8-pentachlorodibenzo-p-dioxin was determined using Salmonella typhimurium tester strains TA98 and TA100 with and without rat hepatic S9 for metabolic activation. All the nitro-PCDDs exhibited some direct-acting mutagenicity with both tester strains, however, the activity was significantly lowered in the presence of exogenous S9 and the compounds were more mutagenic to tester strain TA98. The mutagenicity of the nitro-PCDDs was also dependent on structure because there was a marked decrease in activity with increasing chlorine content. Because nitro-PCDDs have recently been identified as incomplete combustion products of municipal waste, this study confirms that this new class of compounds contains some bacterial mutagens.  相似文献   

9.
The induction of mutation by a variety of mutagens has been measured utilizing the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells (CHO/HGPRT) system). These mutagens include physical agents such as UV light and X-rays, and chemicals such as alkylating agents, ICR-191, and metallic compounds. This system can also be modified for study of the mutagenicity of promutagens such as dimethylnitrosamine (DMN) which require biotransformation for mutagenic action, either through the addition of a rat liver microsomal activation preparation or through a host-mediated activation step using Balb/c athymic mice.  相似文献   

10.
The strain SV3 of Salmonella typhimurium was used as the indicator bacterium in the intrasanguineous host-mediated mutagenicity assay. Bacterial distribution and spontaneous mutation frequency were determined after intravenous injection of SV3 into CD1 male mice. Bacteria were cleared at an exponential rate from the blood stream and recovered mainly from the liver and in smaller quantities from the lungs and kidneys. No bactericidal effect was observed during incubation within the animal, and bacterial division occurred in the liver and probably in the kidneys. The significance of an increased mutation frequency of bacteria recovered from untreated animals is discussed. Mutation induction was measured in bacteria recovered from liver, lungs and kidneys of CD1 mice and CD rats treated with dimethylnitrosamine (DMN). The sensitivity of the intrasanguineous host-mediated technique was compared with the sensitivity of the assay in vitro with microsomal preparations from each tissue and host. Activation by isolated perfused liver and lungs from CD rats was included for comparison with the results from experiments in vivo and in vitro.  相似文献   

11.
In vivo administration to rats of the mixed-function oxidase modifiers 3-methylcholanthrene (MC), pregnenolone-16 alpha-carbonitrile (PCN) or beta-naphthoflavnoe (beta-f) inhibits the hepatic microsome-catalyzed in vitro binding of dimethylnitrosamine (DMN) to DNA. This parallels their effect on DMN-demethylase I, regarded to be the sole activating step in DMN carcinogenesis and fails to account for the previously observed anomaly that MC and PCN inhibit, while beta-NF enhances, the hepatocarcinogenic activity of DMN. The in vitro binding of DMN is clearly dependent on microsomes and NADPH, and is strongly enhanced by soluble cytoplasmic proteins; the presence of the latter has no effect. however, on the relative response to pretreatment by the modifiers. In mice beta-NF enhances and PCN inhibits DMN-demethylase I; beta-NF has no effect on either the cytochrome P-450 level or on the LD50, while PCN strongly increases the cytochrome P-450 level but without influencing the LD50. Neither of the two modifiers has any effect in mice on the host-mediated mutagenicity of DMN in a dose-response study, except for the highest dose of DMN (200 mg/kg) where PCN pretreatment significantly enhanced mutagenicity. To account for the anomalous observations, other potential pathways of DMN metabolism have been explored. Whole rat liver nuclei or isolated nuclear membrane fractions contain no DMN-demethylase or diethylnitrosamine-deethylase activity. In a microsomal mixed-function amine-oxidase assay system neither purified enzyme preparations nor whole microsomes catalyze NADPH oxidation in the presence of DMN as substrate. In addition, the purified enzyme does not catalyze formaldehyde production in the DMN-demethylase assay system. Benzylamine, a typical inhibitor of mitochondrial monoamine oxidase (MAO), is a potent inhibitor of DMN-demethylase activity, but microsomes are devoid of MAO activity. Furthermore, purified MAO has no DMN-demethylase activity. The differential effect of modifiers on the carcinogenicity of DMN probably involves pathways other than DMN metabolism.  相似文献   

12.
The metabolism of chromate by rat liver microsomes has been studied. Incubation of chromate with microsomes in the presence of the enzyme cofactor NADPH, resulted in reduction of chromate. In the absence of NADPH no reduction occurred. Only a small amount of chromate reduction was seen with NADPH in the absence of microsomes. Time course studies, microsome and NADPH concentration dependence studies resulted in conditions giving complete reduction of chromate. The possible relationship of metabolism of chromate to its carcinogenicity and mutagenicity is discussed.  相似文献   

13.
Male Wistar rats were fed diets of varying selenium content in order to obtain selenium-deficient and selenium-supplemented rats. After 5-6 weeks on the respective diet, the rats were used to investigate how selenium influences the effect of dimethylnitrosamine (DMN) on some liver enzymes and related reactions. The selenium-dependent glutathione peroxidase activity in postmicrosomal supernatant from liver was about 1% in selenium-deficient rats as compared to selenium-supplemented rats or rats fed a standard diet. The highest DMN-demethylase activity was observed in postmitochondrial supernatant from selenium-deficient rat liver, and the lowest in selenium-supplemented rats. No dietary effect was observed on hepatic microsomal cytochrome P450 levels. C-Oxygenation of N,N-dimethylaniline (DMA) was not affected by the selenium level. On the other hand, selenium deficiency seemed to reduce N-oxygenation of DMA. The mutagenicity of DMN in Chinese hamster V79 cells after metabolic activation by the isolated perfused rat liver, was approximately doubled when selenium-deficient livers were used as compared to selenium-supplemented livers and livers from rats fed a standard diet. A negative correlation between DMA-N-oxygenation and mutagenicity from DMN was observed, whereas no correlation between DMA-C-oxygenation and mutagenicity from DMN was found.  相似文献   

14.
Comparison studies for detecting differences between liver microsome and S9 preparations from 4 strains (Donryu, Fischer, Sprague-Dawley, Wistar) of young male rats were carried out with pretreatment of the animals by inducers such as PCBs and PB plus 5,6-BF. Each microsome fraction was assayed for the enzymic activity of metabolism of model substrates such as aniline, benzophetamine, BP, DMN and 7-ethoxycoumarin. The hepatic S9 sample was also compared, as regards its metabolizing ability to activate 9 pre-mutagens (2AA, AAF, o-AAT, BP, DAB, DMBA, DMN, m-PDA, quinoline) to directly acting mutagens in the Salmonella/hepatic S9 activation test by using TA98, TA100 and TA1537 strains with or without cytochrome P450 inhibitors (SKF-525A, metyrapone, 7,8-benzoflavone).In the enzymic assay with PCBs-induced microsomes, BP hydroxylation revealed a strain-specific difference: the microsomes from Fischer and Wistar rats were more effective for metabolizing BP than those from the other strains of rat. The effect of induction by PB plus 5,6-BF for Fischer rats showed relatively higher enzymic activity in the same induction group. Other microsomes prepared from rats with and without induction by PB plus 5,6-BF did not show a clear-cut strain dependency in the enzymic activities assayed.In the mutation experiments with hepatic S9 samples, the examination of DAB and quinoline revealed a marked strain difference when S9 samples prepared from PCBs-pretreated and PB-plus-5,6-BF-induced rats were used: the S9 sample from Fischer rats was available for activating the two pre-mutagens to directly acting mutagens. No marked difference in the metabolic activation of the remaining 7-pre-mutagens was observed on other S9 preparations.In examinations of mutagenicity activities with the use of three inhibitors, the two S9 preparations made with the two induction methods showed inhibition profiles closely similar to each other. However, there were minor differences in the profiles by these inhibitors.From these findings it was concluded that Fischer rat-liver S9 is useful for detecting mutagens in the metabolic activation test, when induction by PB plus 5,6-BF was used in the Ames Salmonella test.  相似文献   

15.
Water extracts of leaves of black tea, oolong tea, and green tea, were examined for antimutagenic activity with Salmonella typhimurium test strains, TA 98 and TA 100. These water extracts significantly decreased the reverse mutation induced by crude dimethyl sulfoxide extracts of grilled beef and, by Trp-P-1, Glu-P-1, and B[a]P in the presence of a rat liver microsomal activation system. They also decreased the mutagenicity of AF-2 and 4-NQO requiring no metabolic activation to cause the mutation. Removal of caffeine from tea extracts did not influence the DEGB-induced mutation, but ethyl acetate extraction abolished the effect.  相似文献   

16.
Comparison studies for detecting differences between liver microsome and S9 preparations from 4 strains (Donryu, Fischer, Sprague-Dawley, Wistar) of young male rats were carried out with pretreatment of the animals by inducers such as PCBs and PB plus 5,6-BF. Each microsome fraction was assayed for the enzymic activity of metabolism of model substrates such as aniline, benzophetamine, BP, DMN and 7-ethoxycoumarin. The hepatic S9 sample was also compared, as regards its metabolizing ability to activate 9 pre-mutagens (2AA, AAF, o-AAT, BP, DAB, DMBA, DMN, m-PDA, quinoline) to directly acting mutagens in the Salmonella/hepatic S9 activation test by using TA98, TA100 and TA1537 strains with or without cytochrome P450 inhibitors (SKF-525A, metyrapone, 7,8-benzoflavone).

In the enzymic assay with PCBs-induced microsomes, BP hydroxylation revealed a strain-specific difference: the microsomes from Fischer and Wistar rats were more effective for metabolizing BP than those from the other strains of rat. The effect of induction by PB plus 5,6-BF for Fischer rats showed relatively higher enzymic activity in the same induction group. Other microsomes prepared from rats with and without induction by PB plus 5,6-BF did not show a clear-cut strain dependency in the enzymic activities assayed.

In the mutation experiments with hepatic S9 samples, the examination of DAB and quinoline revealed a marked strain difference when S9 samples prepared from PCBs-pretreated and PB-plus-5,6-BF-induced rats were used: the S9 sample from Fischer rats was available for activating the two pre-mutagens to directly acting mutagens. No marked difference in the metabolic activation of the remaining 7-pre-mutagens was observed on other S9 preparations.

In examinations of mutagenicity activities with the use of three inhibitors, the two S9 preparations made with the two induction methods showed inhibition profiles closely similar to each other. However, there were minor differences in the profiles by these inhibitors.

From these findings it was concluded that Fischer rat-liver S9 is useful for detecting mutagens in the metabolic activation test, when induction by PB plus 5,6-BF was used in the Ames Salmonella test.  相似文献   


17.
Seven compounds isolated from Fructus Schizandrae chinensis, a traditional Chinese tonic, which is also able to decrease liver lesions by hepatoxic chemicals, are named Schizandrin (Sin) A, B and C, Schizandrol (Sol) A and B and Schizandrer (Ser) A and B. They are dibenzo[a,c]cyclooctene derivatives. Dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxy-biphenyl-2,2′-dicarboxylate (DDB) is an intermediate for synthesizing Sin C. The interactions of these compounds with rat liver microsomes in vitro have been investigated. Sol A and Sol B gave type I difference spectrum, the other six compounds gave ‘reverse type I’ difference spectrum. When Schizandrins or DDB were incubated with NADPH-reduced microsomes, Sin B, Sin C, Sol B, Ser A and Ser B generated dual Soret peaks at 455–460 nm and 425–430 nm, the other three compounds caused a difference spectrum without 455 nm peak. All these compounds more or less inhibit liver microsomal hydroxylation of benzo[a]pyrene (BP) demethylation of aminopyrine. Sin B, Sol B and DDB decreased mutagenicity of BP in Ames test.  相似文献   

18.
The mutagenicity of a series of 13 epoxide compounds was studied using a bacterial plate assay system. The histidine-dependent tester strains TA98 (for frameshift mutagens) and TA100 (for base-pair substitution mutagens) of Salmonella typhimurium were used. Mutagenicity was evaluated both with and without the additon of rat liver microsomal extract. Dieldrin, diglycidyl ether of bis phenol A and 3 of its homologues were not mutagenic. Allyl glycidyl ether, n-butyl glycidyl ether, vinly cyclohexene diepoxide, glycidol, glycidal-dehyde, diglycidyl ether, diepoxybutane and diglycidyl ether of substituted glycerine were mutagenic in the TA100 strain, causing reversion of the bacteria to histidine independence. Dose-reponse curves of the mutagenicity of the latter 4 compounds were obtained. On a molar basis, glycidaldehyde was about 20-50 times more potent in producing mutation that were the other 3 epoxides in the dose-response test. In general, the mutagenicity of the epoxides was not enhanced or diminished by the addition of microsomal extract.  相似文献   

19.
The genetic properties of the hepatocarcinogen N,N-dimethylnitrosamine (DMN) were examined in Drosophila for the assessment of the role of dose, cellular metabolism and genic target in its mutagenicity. Genetic activity was assayed with respect to the induction of the non-specific X-chromosome recessives (lethals and visibles) relative to the effects on specific genic sites, especially rDNA, which yields bobbed (bb) mutations.Dose dependence followed a quadratic course for all mutational classes and germ cell types, which indicated that DMN induced at least some multiple-hit mutagenic events. The genetic activity of DMN was favoured by cellular metabolism for all mutational classes, as was indicated by the progressive increase in mutation yield during spermatogenesis — from the metabolically inert mature sperm to the actively metabolizing spermatocytes and spermatogonia.The role of DNA methylation in the mutagenicity of DMN was deduced from quantitative assays of its genetic activity relative to the methylating nitrosamide — N-methyl-N-nitrosourethane (MNUr) — over the same dose range (1–10 mM) and on identical cell types and genic targets. In the metabolically inert cells (mature sperm), the two compounds were equally active with respect to the non-specific effects (X-recessives), but MNUr was considerably more effective on rDNA (bb's). Conversely, in the metabolically active cells (spermatocytes and spermatogonia), DMN exerted a much higher non-specific mutagenicity than MNUr, but the two compounds were equally effective on rDNA. These results could not be entirely interpreted by the methylation hypothesis and indicated that a DMN aldehydic metabolite, structurally analogous to MNUr, might be responsible for the induction of the rDNA mutations.The rDNA selectivity index of DMN was significantly lower than for MNUr, which paralleled their relative carcinogenic versatilities. However, DMN was comparatively more effective on the tRNA genes, a feature which might be associated with its oncogenic specificity.  相似文献   

20.
Eight mollicellins (depsidones) were assayed for mutagenicity and antibacterial activity in Salmonella/microsome tests involving histidine reversion and forward mutation to 8-azaguanine resistance. Two of them, mollicellins C and E, which contain a 3-methylbutenoic acid moiety, were mutagenic and bactericidal for Salmonella typhimurium in the absence of microsomes. Mollicellins D and F, each containing a chlorine atom, were bactericidal but not mutagenic. The mutagenic activity was completely abolished and the antibiotic activity was greatly reduced by coincubation with rat liver microsomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号